Shivaram Venkataraman
        Assistant Professor, Computer Science, University of Wisconsin-Madison
        Office: 7367 CS. Email: shivaram at cs.wisc.edu
        
        
        
        
        
        Publications
        
          - Tzu-Tao Chang, Shivaram Venkataraman
        Eva: Cost-Efficient Cloud-Based Cluster Scheduling -
        Eurosys 2025
           
- Johannes Freischuetz, Konstantinos Kanellis, Brian Kroth, Shivaram Venkataraman
        TUNA: Tuning Unstable and Noisy Cloud Applications -
        Eurosys 2025
- Minghao Yan, Saurabh Agarwal, Shivaram Venkataraman
        Decoding Speculative Decoding -
        NAACL 2025
         
        
- 
        Meguru Yamazaki, Shivaram Venkataraman
        CO2: Precise Attention Score Observation for improving KV
          Cache Replacement in Large Language Model - Efficient Systems for Foundation Models
         (ES-FoMO) Workshop at the International Conference on Machine Learning (ICML) 2024
        
        
- 
        Rutwik Jain, Brandon Tran, Keting Chen, Matthew Sinclair, Shivaram Venkataraman
        
         PAL: A Variability-Aware Policy for Scheduling ML Workloads in GPU Clusters 
         - International Conference for High Performance Computing, Networking, Storage and
        Analysis (Supercomputing 2024)
        
        
- 
        Konstantinos Kanellis, Johannes Freischuetz, Shivaram Venkataraman Nautilus: A Benchmarking
          Platform for DBMS Knob Tuning - DEEM Workshop 2024
        
        
- 
        Saurabh Agarwal, Bilge Acun, Basil Homer, Mostafa Elhoushi, Yejin Lee, Shivaram Venkataraman, Dimitris Papailiopoulos, Carole-Jean Wu
           CHAI: Clustered Head Attention for Efficient
             LLM Inference - ICML 2024
        
        
- 
              Song Bian, Dacheng Li, Hongyi Wang, Eric Xing, Shivaram Venkataraman Does
          compressing activations help model parallel training? - MLSys 2024
        
        
- 
        Saurabh Agarwal, Amar Phanishayee, Shivaram Venkataraman Blox: A
          Modular Toolkit for Deep Learning Schedulers - Eurosys 2024
        
        
- 
        Saurabh Agarwal, Chengpo Yan, Ziyi Zhang, Shivaram Venkataraman
        
          BagPipe: Accelerating Deep Recommendation Model Training
         - SOSP 2023
        
        
- 
        Qiyang Ding, Pengfei Zheng, Shreyas Kudari, Shivaram Venkataraman, Zhao Zhang
         Mirage: Towards Low-interruption Services on Batch GPU
          clusters with Reinforcement Learning
         - International Conference for High Performance Computing, Networking, Storage and
        Analysis (Supercomputing 2023)
        
        
- 
        Roger Waleffe, Jason Mohoney, Theodoros Rekatsinas, Shivaram Venkataraman
        
          MariusGNN: Resource-Efficient Out-of-Core Training of Graph Neural Networks
         - Eurosys 2023
        
        
- 
        Pengfei Zheng, Rui Pan, Tarannum Khan,  Shivaram Venkataraman, Aditya Akella
        Shockwave: Fair and Efficient Cluster Scheduling for Dynamic
          Adaptation in Machine Learning - NSDI 2023
        
        
- 
        Harsh Darshan Sapra, Olesia Elfimova, Sahana Upadhya, Lukas Desorcy, Michael Wagner,
        Shivaram Venkataraman, Chol-Bum Kweon, Sage Kokjohn, Justin Shumaker Estimating
          Battery State-of-Charge within 1% using Machine Learning and Physics-based Models - SAE World Congress 2023
        
        
- 
        Prasoon Sinha, Akhil Guliani, Rutwik Jain, Matthew Sinclair, Shivaram Venkataraman
        
          Not All GPUs Are Created Equal: Characterizing Variability in Large-Scale, Accelerator-Rich Systems
         - International Conference for High Performance Computing, Networking, Storage and
        Analysis (Supercomputing 2022)
        
        
- 
        Konstantinos Kanellis, Cong Ding, Brian Kroth, Andreas Müller, Carlo Curino, Shivaram Venkataraman
        
          LlamaTune: Sample-Efficient DBMS Configuration Tuning
         - VLDB 2022
        
        
- 
        Saurabh Agarwal, Hongyi Wang, Shivaram Venkataraman, Dimitris Papailiopoulos
        
          On the Utility of Gradient Compression in Distributed Training Systems
         - MLSys 2022
        
        
- 
        Anze Xie, Anders Carlsson, Jason Mohoney, Roger Waleffe , Shanan Peters, Theodoros Rekatsinas, Shivaram Venkataraman
        
          Demonstration of Marius: Graph Embeddings with a Single Machine
         - VLDB 2021
        
        
- 
        Adarsh Kumar, Kausik Subramanian, Shivaram Venkataraman, Aditya Akella
        Doing more by doing less: how structured partial backpropagation improves deep
          learning clusters
        - DistributedML Workshop at CoNEXT 2021
        
        
- 
        Gregory Pauloski, Qi Huang, Lei Huang, Shivaram Venkataraman, Kyle Chard, Ian Foster, Zhao Zhang
        
          KAISA: An Adaptive Second-order Optimizer Framework for Deep Neural Networks
         - International Conference for High Performance Computing, Networking, Storage and Analysis (SC21)
        
        
- 
        Jason Mohoney, Roger Waleffe, Yiheng Xu, Theodoros Rekatsinas, Shivaram Venkataraman
        
          Marius: Learning Massive Graph Embeddings on a Single Machine
         - OSDI 2021
        
        
- 
        Arjun Singhvi, Arjun Balasubramanian, Kevin Houck, Mohammed Danish Shaikh, Shivaram Venkataraman, Aditya Akella
        Atoll: A Scalable Low-Latency Serverless Platform
         - SoCC 2021
        
        
- 
        Saurabh Agarwal, Hongyi Wang, Kangwook Lee, Shivaram Venkataraman, Dimitris Papailiopoulos
        Accordion: Adaptive Gradient Communication via Critical Learning Regime Identification
         - MLSys 2021
        
        
- 
        Le Xu, Shivaram Venkataraman, Indranil Gupta, Luo Mai and Rahul Potharaju
        
          Move Fast and Meet Deadlines: Fine-grained Real-time Stream Processing with Cameo
         - NSDI 2021
        
        
- 
        Yuhan Liu, Saurabh Agarwal, Shivaram Venkataraman
        
          AutoFreeze: Automatically Freezing Model Blocks to Accelerate Fine-tuning
         - arXiv preprint code
        
        
- 
        Arjun Balasubramanian, Adarsh Kumar, Yuhan Liu, Han Cao, Shivaram Venkataraman, Aditya Akella
        
          Accelerating Deep Learning Inference via Learned Caches
         - arXiv preprint
        
        
- 
        Vaishaal Shankar, Karl Krauth, Kailas Vodrahalli, Qifan Pu, Ion Stoica, Benjamin Recht, Jonathan Ragan-Kelley, Eric Jonas, Shivaram Venkataraman
        Serverless Linear Algebra - SoCC 2020
        
        
- 
				Konstantinos Kanellis, Ramnatthan Alagappan, Shivaram Venkataraman. 
         
          Too Many Knobs to Tune? Towards Faster Database Tuning by Pre-selecting Important Knobs
         - HotStorage 2020
        
        
- 
					Kshiteej Mahajan, Arjun Balasubramanian, Arjun Singhvi, Shivaram Venkataraman, and Aditya Akella, Amar Phanishayee, Shuchi Chawla.
        
					Themis: Fair and Efficient GPU Cluster Scheduling
				 - NSDI 2020
        
        
- 
					Guanhua Wang, Shivaram Venkataraman, Amar Phanishayee, Nikhil Devanur, Jorgen Thelin, Ion Stoica
        
            Blink: Fast and Generic Collectives for Distributed ML
				 - MLSys 2020
        
        
- 
        Jack Kosaian, K.V. Rashmi, Shivaram Venkataraman
        Parity Models: Erasure-Coded Resilience for Prediction Serving
          Systems - SOSP 2019
        
        
- 
        Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie Qian, Wencong Xiao, Fan Yang
        Analysis of Large-Scale
          Multi-Tenant GPU Clusters for DNN Training Workloads - USENIX ATC 2019
        
        
- 
					John Emmons, Sadjad Fouladi, Ganesh Ananthanarayanan, Shivaram Venkataraman, Silvio Savarese, Keith Winstein
        Cracking open the DNN black-box: Video Analytics with DNNs across the Camera-Cloud Boundary - 
         Hot Topics in Video Analytics and Intelligent Edges (HotEdgeVideo 2019)
        
        
- 
				  Adarsh Kumar, Arjun Balasubramanian, Shivaram Venkataraman, and Aditya Akella
         Accelerating Deep Learning Inference via Freezing - HotCloud 2019
        
        
- 
					Aarati Kakaraparthy, Abhay Venkatesh, Amar Phanishayee, Shivaram Venkataraman
         The Case for Unifying Data Loading in Machine Learning Clusters - HotCloud 2019
        
        
- 
         Qifan Pu, Shivaram Venkataraman, Ion Stoica 
         Shuffling, Fast and Slow: Scalable Analytics on Serverless Infrastructure - NSDI 2019
        
        
- 
        Jack Kosaian, K.V. Rashmi, Shivaram Venkataraman
         Learning a Code: Machine Learning for
          Approximate Non-Linear Coded Computation  - arxiv preprint
        
        
        
- 
         Anand Padmanabha Iyer, Zaoxing Liu and Xin Jin, Shivaram Venkataraman, Vladimir Braverman, Ion Stoica 
         ASAP: Fast, Approximate Pattern Mining at Scale - OSDI 2018
        
        
- 
        Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodik, Shivaram Venkataraman, Paramvir Bahl, and Matthai Philipose, Phillip B. Gibbons, Onur Mutlu 
        Focus: Querying Large Video Datasets with Low Latency and Low Cost - OSDI 2018
        
        
- 
        Luo Mai, Kai Zeng, Rahul Potharaju, Le Xu, Steve Suh, Shivaram Venkataraman, Paolo Costa,
        Terry Kim, Saravanam Muthukrishnan, Vamsi Kuppa, Sudheer Dhulipalla, Sriram Rao
        Chi: A Scalable and Programmable Control Plane for Distributed Stream Processing Systems - VLDB 2018
        
        
- 
        Anand Iyer, Aurojit Panda, Shivaram Venkatraman, Mosharaf Chowdhury, Aditya Akella, Scott Shenker, Ion Stoica
        Bridging the GAP: Towards Approximate Graph
          Analytics - GRADES-NDA 2018.
        
        
- 
        Anand Iyer, Zaoxing Liu, Xin Jin, Shivaram Venkataraman, Vladimir Braverman, Ion Stoica
        Towards Fast and Scalable Graph Pattern
          Mining - HotCloud 2018
        
        
- 
        Shivaram Venkataraman
        System Design for Large Scale Machine Learning - PhD Dissertation
        
        
- 
        Shivaram Venkataraman, Aurojit Panda, Kay Ousterhout, Michael Armbrust, Ali Ghodsi, Michael J. Franklin, Benjamin Recht, Ion Stoica
        Drizzle: Fast and Adaptable Stream Processing at Scale - SOSP 2017
        
        
         
- 
        Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, Benjamin Recht
        Occupy the Cloud: Distributed Computing for the 99%  - SoCC 2017 - arxiv version
        
        
         
- 
        Stephen Tu, Shivaram Venkataraman, Ashia C. Wilson, Alex Gittens, Michael I. Jordan, Benjamin Recht
        Breaking Locality Accelerates Block Gauss-Seidel  - ICML 2017 arxiv version
        
        
         
- 
        Evan R. Sparks, Shivaram Venkataraman, Tomer Kaftan, Michael J. Franklin, Benjamin Recht
        KeystoneML: Optimizing Pipelines for Large-Scale Advanced Analytics  - ICDE 2017 arxiv version 
        
        
         
- 
        Omid Alipourfard, Jianshu Chen, Hongqiang Liu, Shivaram Venkataraman, Minlan Yu, Ming Zhang
        Cherry Pick: Adaptively Unearthing the Best Cloud Configurations for Big Data Analytics - NSDI 2017
        
        
         
- 
        Xinghao Pan, Shivaram Venkataraman, Zizheng Tai, Joseph Gonzalez
        Hemingway: Modeling Distributed Optimization Algorithms - Learning Systems Workshop, NIPS 2016
        
        
         
- 
        Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael
        Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael
        J. Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker, Ion Stoica
        Apache Spark: A Unified Engine for Big Data Processing - CACM Contributed Article, Nov 2016
        
         
- 
        Shivaram Venkataraman, Zongheng Yang, Michael J Franklin, Ben Recht, Ion Stoica
        Ernest: Efficient Performance Prediction for Large
          Scale Advanced Analytics - NSDI 2016
        
        
         
- 
        Shivaram Venkataraman, Zongheng Yang, Davies Liu, Eric Liang, Hossein Falaki, Xiangrui
        Meng, Reynold Xin, Ali Ghodsi, Michael Franklin, Ion Stoica, Matei Zaharia
        SparkR: Scaling R Programs with Spark - SIGMOD 2016
        
        
         
- 
        Reza Zadeh, Xiangrui Meng, Alexander Ulanov, Burak Yavuz, Li Pu, Shivaram Venkataraman, Evan
        Sparks, Aaron Staple, Matei Zaharia
        Matrix Computations and Optimization in Apache
          Spark - KDD 2016. Best Paper runner-up, Applied Data Science Track.
        
        
         
- 
        Stephen Tu, Rebecca Roelofs, Shivaram Venkataraman, Ben Recht
        Large Scale Kernel Learning using Block Coordinate
          Descent - arxiv preprint
        
        
         
- 
        Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkataraman, Davies
        Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, Doris Xin, Reynold Xin, Michael J
        Franklin, Reza Zadeh, Matei Zaharia, Ameet Talwalkar
        MLlib: Machine Learning in Apache Spark -
        JMLR 17(34):1–7, 2016
        
        
         
- 
        Shivaram Venkataraman, Aurojit Panda, Ganesh Ananthanarayanan, Michael Franklin, Ion Stoica
            The Power of Choice in Data-Aware Cluster Scheduling - OSDI 2014
        
        
         
- 
        Peter Bailis, Shivaram Venkataraman, Michael Franklin, Joseph M. Hellerstein, and Ion Stoica
        Quantifying eventual consistency with PBS - CACM
          Research Highlight August 2014
        
        
         
- 
        Kay Ousterhout, Aurojit Panda, Joshua Rosen, Shivaram Venkataraman,
            Reynold Xin, Sylvia Ratnasamy, Scott Shenker, Ion Stoica
            The Case for Tiny Tasks in Compute Clusters - HotOS 2013
        
        
         
- 
        Shivaram Venkataraman, Erik Bodzsar, Indrajit Roy, Alvin AuYoung, and Robert S. Schreiber
        Presto: Distributed Machine Learning and Graph Processing with Sparse
          Matrices - Eurosys 2013 
        
         
- 
        Peter Bailis, Shivaram Venkataraman, Michael Franklin, Joseph M. Hellerstein, and Ion Stoica
        PBS at Work: Advancing Data Management with
          Consistency Metrics. - Demo at SIGMOD 2013
        
         
- 
        Andrew Wang, Shivaram Venkataraman, Sara Alspaugh, Ion Stoica, and Randy Katz
           Cake: Enabling High-level SLOs
             on Shared Storage Systems  - SoCC 2012
        
        
         
- 
        Andrew Wang, Shivaram Venkataraman, Sara Alspaugh, Ion Stoica, and Randy Katz
           Sweet Storage SLOs
             with Frosting - HotCloud 2012
        
        
        
         
- 
        Shivaram Venkataraman, Indrajit Roy, Alvin AuYoung, and Robert S. Schreiber
        Using R for Iterative and
          Incremental Processing - HotCloud 2012
        
         
- 
        Peter Bailis, Shivaram Venkataraman, Michael Franklin, Joseph M. Hellerstein, and Ion Stoica
        Quantifying Eventual
          Consistency with PBS - VLDB Journal Special Edition - Best of VLDB 2012
        
         
- 
        Peter Bailis, Shivaram Venkataraman, Michael Franklin, Joseph M. Hellerstein, and Ion Stoica
        Probabilistically Bounded
          Staleness for Practical Partial Quorums - VLDB 2012
        
         
- 
        
          Storage system design for non-volatile byte-addressable memory using
          consistent and durable data structures - Masters Thesis, University of Illinois, Urbana-Champaign 2011
        
        
         
- 
        Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, Roy Campbell
        Consistent and Durable Data Structures for Non-Volatile
             Byte-Addressable Memory - FAST 2011
        
        
         
- 
        Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, Roy Campbell
        Redesigning Data Structures for Non-Volatile Byte-Addressable
             Memory - Non-Volatile Memories Workshop 2011
        
        
         
- 
        Reza Farivar, Harshit Kharbanda, Shivaram Venkataraman, Roy Campbell
        An Algorithm for Fast Edit
          Distance Computation on GPUs - IEEE Innovative Parallel Computing
        (InPar) 2012
        
         
- 
        Abhishek Verma, Shivaram Venkataraman, Matthew Caesar, and Roy H. Campell
        Scalable Storage for
          Data-intensive Computing - Handbook of Data-Intensive Computing, Springer Science, 2011.
        
        
         
- 
        Ellick Chan, Shivaram Venkataraman, Nadia Tkach, Kevin Larson, Alejandro Gutierrez and Roy H. Campbell
        Characterizing Data
          Structures for Volatile Forensics - Workshop on Systematic Approaches to Digital
        Forensic Engineering (SADFE), 2011
        
         
- 
        Elllick Chan, Shivaram Venkataraman, Francis David, Amey Chaugule, Roy Campbell
        Forenscope: A Framework
          for Live Forensics - ACSAC 2010
        
         
- 
        Abhishek Verma, Xavier Llora, Shivaram Venkataraman, David Goldberg and Roy Campbell
        Scaling eCGA Model Building via
          Data Intensive Computing - IEEE Congress on Evolutionary Computation, CEC 2010