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Abstract

System Design for Large Scale Machine Learning

by

Shivaram Venkataraman

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Michael J. Franklin, Co-chair

Professor Ion Stoica, Co-chair

The last decade has seen two main trends in the large scale computing: on the one hand we
have seen the growth of cloud computing where a number of big data applications are deployed
on shared cluster of machines. On the other hand there is a deluge of machine learning algorithms
used for applications ranging from image classification, machine translation to graph processing,
and scientific analysis on large datasets. In light of these trends, a number of challenges arise in
terms of how we program, deploy and achieve high performance for large scale machine learning
applications.

In this dissertation we study the execution properties of machine learning applications and
based on these properties we present the design and implementation of systems that can address
the above challenges. We first identify how choosing the appropriate hardware can affect the
performance of applications and describe Ernest, an efficient performance prediction scheme that
uses experiment design to minimize the cost and time taken for building performance models. We
then design scheduling mechanisms that can improve performance using two approaches: first by
improving data access time by accounting for locality using data-aware scheduling and then by
using scalable scheduling techniques that can reduce coordination overheads.
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Chapter 1

Introduction

Machine learning methods power the modern world with applications ranging from natural lan-
guage processing [32], image classification [56] to genomics [158] and detecting supernovae [188]
in astrophysics. The ubiquity of massive data [50] has made these algorithmic methods viable
and accurate across a variety of domains [90, 118]. Supervised learning methods used to classify
images are developed using millions of labeled images [107] while scientific methods like super-
novae detection or solar flare detection [99] are powered by high resolution images continuously
captured from telescopes.

To obtain high accuracy machine learning methods typically need to process large amounts
of data [81]. For example, machine learning models used in applications like language mod-
eling [102] are trained on a billion word datasets [45]. Similarly in scientific applications like
genome sequencing [133] or astrophysics, algorithms need to process terabytes of data captured
every day. The decline of Moore’s law, where the processing speed of a single core no longer
scales rapidly, and limited bandwidth to storage media like SSD or hard disks [67], makes it both
inefficient and in some cases impossible to use a single machine to execute algorithms on large
datasets. Thus there is a shift towards using distributed computing architectures where a number
of machines are used in coordination to execute machine learning methods.

Using a distributed computing architecture has become especially prevalent with the advent
of cloud computing [19], where users can easily provision a number of machines for a short time
duration. Along with the limited duration, cloud computing providers like Amazon EC2 also allow
users to choose the amount of memory, CPU and disk space provisioned. This flexibility makes
cloud computing an attractive choice for running large scale machine learning methods. However
there are a number of challenges in efficiently using large scale compute resources. These include
questions on how the coordination or communication across machines is managed and how we can
achieve high performance while remaining resilient to machine failures [184].

In this thesis, we focus on the design of systems used to execute large scale machine learning
methods. To influence our design, we characterize the performance of machine learning methods
when they are run on a cluster of machines and use this to develop systems that can improve
performance and efficiency at scale. We next review the important trends that lead to the systems
challenges at hand and present an overview of the key results developed in this thesis.
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1.1 Machine Learning Workload Properties
Machine learning methods are broadly aimed at learning models from previously collected data

and applying these models to new, unseen data. Thus machine learning methods typically consist
of two main phases: a training phase where a model is built using training data and a inference
phase where the model is applied. In this thesis we will focus only on the training of machine
learning models.

Machine learning methods can be further classified into supervised and unsupervised methods.
At a high level, supervised methods use labeled datasets where each input data item has a corre-
sponding label. These methods can be used for applications like classifying an object into one of
many classes. On the other hand, unsupervised methods typically operate on just the input data
and can be used for applications like clustering where the number or nature of classes is not known
beforehand. For supervised learning methods, having a greater amount of training data means that
we can build a better model that can generate predictions with greater accuracy.

From a systems perspective large machine learning methods present a new workload class that
has a number of unique properties when compared with traditional data processing workloads. The
main properties we identify are:

• Machine learning algorithms are developed using linear algebra operations and hence are
computational and communication intensive [61].

• Further, as the machine learning models assume that the training data has been sampled from
a distribution [28], they build an model that approximates the best model on the distribution.

• A number of machine learning methods make incremental progress: i.e., the algorithms are
initialized at random and at each iteration [29, 143], they make progress towards the final
model.

• Iterative machine learning algorithms also have specific data access patterns where every
iteration is based on a sample [115, 163] of the input data.

We provide examples on how these properties manifest in real world applications in Chapter 2.
The above properties both provide flexibility and impose constraints on systems used to exe-

cute machine learning methods. The resource usage change means that systems now need to be
carefully architected to balance computation and communication. Further the iterative nature im-
plies that I/O overhead and coordination per-iteration needs to be minimized. On the other hand,
the fact that the models built are approximate and only use a sample of input data at each iteration
provides system designers additional flexibility. We develop systems that exploit these properties
in this thesis.

1.2 Cloud Computing: Hardware & Software
The idea of cloud computing, where users can allocate compute resources on demand, has

brought to reality the long held dream of computing as a utility. Cloud computing also changes the
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cost model: instead of paying to own and maintain machines, users only pay for the time machines
are used.

In addition to the cost model, cloud computing also changes the resource optimization goals
for users. Traditionally users aimed to optimize the algorithms or software used given the fixed
hardware that was available. However cloud computing providers like Amazon EC2 allow users to
select how much memory, CPU, disk should be allocated per instance. For example on EC2 users
could provision a r3.8xlarge instance with 16 cores, 244 GB of memory or a c5.18xlarge
which has 36 cores, 144 GB of memory. These are just two examples out of more than fifty
different instance types offered. The enormous flexibility offered by cloud providers means that it
is now possible to jointly optimize both the resource configuration and the algorithms used.

With the widespread use of cluster computing, there have also been a number of systems de-
veloped to simplify large scale data processing. MapReduce [57] introduced a high level program-
ming model where users could supply the computation while the system would take care of other
concerns like handling machine failures or determining which computation would run on which
machine. This model was further generalized to general purpose dataflow programs in systems
like Dryad [91], DryadLINQ [182] and Spark [185]. These systems are all based on the bulk-
synchronous parallel (BSP) model [166] where all the machines coordinate after completing one
step of the computation.

However such general purpose frameworks are typically agnostic to the machine learning work-
load properties we discussed in the previous section. In this thesis we therefore look at how to
design systems that can improve performance for machine learning methods while retaining prop-
erties like fault tolerance.

1.3 Thesis Overview
In this thesis we study the structure and property of machine learning applications from a sys-

tems perspective. To do this, we first survey a number of real world, large scale machine learning
workloads and discuss how the properties we identified in Section 1.1 are relevant to system de-
sign. Based on these properties we then look at two main problems: performance modeling and
task scheduling.

Performance Modeling: In order to improve performance, we first need to understand the per-
formance of machine learning applications as the cluster and data sizes change. Traditional ap-
proaches that monitor repeated executions of a job [66], can make it expensive to build a perfor-
mance model. Our main insight is that machine learning jobs have predictable structure in terms of
computation and communication. Thus we can build performance models based on the behavior
of the job on small samples of data and then predict its performance on larger datasets and cluster
sizes. To minimize the time and resources spent in building a model, we use optimal experiment
design [139], a statistical technique that allows us to collect as few training points as required. The
performance models we develop can be used to both inform the deployment strategy and provide
insight into how the performance is affected as we scale the data and cluster used.
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Scheduling using ML workload properties: Armed with the performance model and the work-
load characteristics, we next study how we can improve performance for large scale machine learn-
ing workloads. We split performance into two major parts, the data-plane and control-plane, and
we systematically study methods to improve the performance of each of them by making them
aware of the properties of machine learning algorithms. To optimize the data plane, we design a
data-aware scheduling mechanism that can minimize the amount of time spent in accessing data
from disk or the network. To minimize the amount of time spent in coordination, we propose
scheduling techniques that ensure low latency execution at scale.

Contributions: In summary, the main contributions of this thesis are

• We characterize large scale machine learning algorithms and present case studies on which
properties of these workloads are important for system design.

• Using the above characterization we describe efficient techniques to build performance mod-
els that can accurately predict running time. Our performance models are useful to make
deployment decisions and can also help users understand how the performance changes as
the number and type of machines used change.

• Based on the the performance models we then describe how the scalability and performance
of machine learning applications can be improved using scheduling techniques that exploit
structural properties of the algorithms.

• Finally we present detailed performance evaluations on a number of benchmarks to quantify
the benefits from each of our techniques.

1.4 Organization
This thesis incorporates our previously published work [168–170] and is organized as follows.

Chapter 2 provides background on large scale machine learning algorithms and also surveys exist-
ing systems developed for scalable data processing.

Chapter 3 studies the problem of how we can efficiently deploy machine learning applications.
The key to address this challenge is developing a performance prediction framework that can accu-
rately predict the running time on a specified hardware configuration, given a job and its input. We
develop Ernest [170], a performance prediction framework that can provide accurate predictions
with low training overhead.

Following that Chapter 4 and Chapter 5 present new scheduling techniques that can improve
performance at scale. Chapter 4 looks at how we can reduce the coordination overhead for low
latency iterative methods while preserving fault tolerance. To do this we develop two main tech-
niques: group scheduling and pre-scheduling. We build these techniques in a system called Driz-
zle [169] and also study how these techniques can be applied to other workloads like large scale
stream processing. We also discuss how Drizzle can be used in conjunction with other systems like
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parameter servers, used for managing machine learning models, and compare the performance of
our execution model to other widely used execution models.

We next study how to minimize data access latency for machine learning applications in Chap-
ter 5. A number of machine learning algorithms process small subsets or samples of input data
at each iteration and we exploit the number of choices available in this process to develop a data-
aware scheduling mechanism in a system called KMN [168]. The KMN scheduler improves lo-
cality of data access and also minimizes the amount of data transferred across machines between
stages of computation. We also extend KMN to study how other workloads like approximate query
processing can be benefit from similar scheduling improvements.

Finally, Chapter 6 discusses directions for future research on systems for large scale learning
and how some of the more recent trends in hardware and workloads could influence system design.
We then conclude with a summary of the main results.
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Chapter 2

Background

2.1 Machine Learning Workloads
We next study examples of machine learning workloads to characterize the properties that make

them different from traditional data analytics workloads. We focus on supervised learning meth-
ods, where given training data and its corresponding labels, the ML algorithm learns a model that
can predict labels on unseen data. Similar properties are also exhibited by unsupervised methods
like K-Means clustering. Supervised learning algorithms that are used to build a model are typi-
cally referred to as optimization algorithms and these algorithms seek to minimize the error in the
model built. One of the frameworks to analyze model error is Empirical Risk Minimization (ERM)
and we next study how ERM can be used to understand properties of ML algorithms.

2.1.1 Empirical Risk Minimization
Consider a case where we are given n training data points x1. . .xn and the corresponding labels

y1. . . yn. We denote L as a loss function that returns how "close" a label is from the predicted label.
Common loss functions include square distance for vectors or 0−1 loss for binary classification. In
this setup our goal is to learn a function f that minimizes the expected value of the loss. Assuming
f belongs to a family of functions F , optimization algorithms can be expressed as learning an
model f̂ which is defined as follows:

En(f) =
1

n

n∑
i=1

L(f(xi), yi) (2.1)

f̂ = argmin
f∈F

En(f) (2.2)

The error in the model that is learned consists of three parts: the approximation error εapp,
the estimation error εest and the optimization error εopt. The approximation error comes from the
function family that we choose to optimize over, while the estimation error comes from the fact
that we only have a sample of input data for training. Finally the optimization error comes from the
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Algorithm 1 Mini-batch SGD for quadratic loss. From [28, 29]
Input: data X ∈ X n×d, Y ∈ Rn×k, number of iterations n, step size s

mini-batch size b ∈ {1, ..., n}.
π ← random permutation of {1, ..., n}.
w ← 0d×k.
for i = 1 to n do
π ← random sample of size b from {1, ..., n}.
Xb ← FEATUREBLOCK(X, Iπi). /* Row block. */
∇f ← (XT

b (Xb ∗W ))−XT
b (Y ).

W ← W − s ∗ ∇f .

optimization algorithm. There are two main takeaways that we can see from this formulation. First
is that as the number of data points available increases the estimation error should decrease, thereby
showing why using more data often leads to better models. Second we see that the optimization
error only needs to be on the same order as the other two sources of error. Hence if we are running
an optimization algorithm it is good enough to use an approximate method.

For example if we were optimizing the square loss min
W
||XW − Y ||2 then the exact solution

is W ∗ = (XTX)−1(XTY ) where X and Y represent the data and label matrix respectively. If
we assume the number of dimensions in the feature vector is d then it takes O(nd2) + O(d3) to
compute the exact solution. On the other hand as we only need an approximate solution we can use
an iterative method like conjugate gradient or Gauss-Seidel that can give provide an approximate
answer much faster. This also has implications for systems design as we can now have more
flexibility in the our execution strategies while building models that are within the approximation
bounds.

Next we look at two patterns used by iterative solvers and discuss the main factors that influence
their performance.

2.1.2 Iterative Solvers
Consider an iterative solver whose input is a data matrix X ∈ Rn×d and a label matrix

Y ∈ Rn×k. Here n represents the number of data points, d the dimension of each data point
and k the dimension of the label. In such a case there are two ways in which iterative solvers
proceed: at every iteration, they either sample a subset of the examples (rows) or sample a subset
of the dimensions (columns) to construct a smaller problem. They then use the smaller problem to
improve the current model and repeat this process until the model converges. There are two main
characteristics we see here: first algorithms are iterative and run a large number of iterations to
converge on a solution. Second algorithms sample a subset of the data at each iteration. We next
look at two examples of iterative solvers that sample examples and dimensions respectively. For
both cases we consider a square loss function
Mini-batch Gradient Descent: Let us first consider a mini-batch gradient descent algorithm
shown in Algorithm 1. In this algorithm there is a specified batch size b that is provided and
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Algorithm 2 BCD for quadratic loss. From [162]
Input: data X ∈ X n×d, Y ∈ Rn×k, number of epochs ne,

block size b ∈ {1, ..., d}.
π ← random permutation of {1, ..., d}.
I1, ..., I d

b
← partition π into d

b
pieces.

W ← 0d×k.
R← 0n×k
for ` = 1 to ne do
π ← random permutation of {1, ..., d

b
}.

for i = 1 to d
b

do
Xb ← FEATUREBLOCK(X, Iπi). /* Column block. */
R← R−XbW (Iπi , [k]).
Solve (XT

b Xb + nλIb)Wb = XT
b (Y −R).

R← R +XbWb.
W (Iπi , [k])← Wb.

at each iteration b rows of the feature matrix are sampled. This smaller matrix (Xb) is then used
to compute the gradient and the final value of the gradient is used to update the model taking into
account the step size s.

Block Coordinate Descent: To see how column sampling is used, we present a block-coordinate
descent (BCD) algorithm in Algorithm 2. The BCD algorithm works by sampling a block b of
coordinates (or columns) from the feature matrix at each iteration. For quadratic loss, this column
block Xb is then used to compute an update. We only update values for the selected b coordinates
and keep the other coordinates constant. This process is repeated on every iteration. A common
sampling scheme is to split the coordinates into blocks within an epoch and run a specified number
of epochs.

Having discussed algorithms that use row and column sampling we next turn our attention to
real-world end-to-end machine learning applications. We present two examples again: one where
we deal with a sparse feature matrix and another with a dense feature matrix. These examples are
drawn from the KeystoneML [157] project.

Text Analytics. Text classification problems typically involve tasks which start with raw data
from various sources e.g. from newsgroups, emails or a Wikipedia dataset. Common text clas-
sification pipelines include featurization steps like pre-processing the raw data to form N-grams,
filtering of stop words, part-of-speech tagging or named entity recognition. Existing packages like
CoreNLP [118] perform featurization for small scale datasets on a single machine. After perform-
ing featurization, developers typically learn a model using NaiveBayes or SVM-based classifiers.
Note that the data here usually has a large number of features and is very sparse. As an exam-
ple, consider a pipeline to classify product reviews from the Amazon Reviews dataset [120]. The
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Figure 2.1: Execution of a machine learning pipeline used for text analytics. The pipeline consists of
featurization and model building steps which are repeated for many iterations.

dataset is a collection of approximately 65 million product reviews, rated from 1 to 5 stars. We can
build a classifier to predict polarity of a review by chaining together nodes as shown in Figure 2.1.
The first step of this pipeline is tokenization, followed by an TopK bigram operator which extracts
most common bigrams from the document. We finally build a model using a Logistic Regression
with mini-batch SGD.

Speech Recognition Pipeline. As another example we consider a speech recognition pipeline [90]
that achieves state-of-the-art accuracy on the TIMIT [35] dataset. The pipeline trains a model us-
ing kernel SVMs and the execution DAG is shown in Figure 2.2. From the figure we can see that
pipeline contains three main stages. The first stage reads input data, and featurizes the data by
applying MFCC [190]. Following that it applies a random cosine transformation [141] to each
record which generates a dense feature matrix. In the last stage, the features are fed into a block
coordinate descent based solver to build a model. The model is then refined by generating more
features and these steps are repeated for 100 iterations to achieve state-of-the-art accuracy.

In summary, in this section we surveyed the main characteristics of machine learning workloads
and showed how the properties of approximation, sampling are found in iterative solvers. Finally
using real world example we also studied how data density could vary across applications. We next
look at how these applications are executed on a distributed system to derive systems characteristics
that can be optimized to improve performance.

2.2 Execution Phases
To understand the system characteristics that influence the performance of machine learning

algorithms we first study how the two algorithms presented in the previous section can be executed
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Figure 2.2: Execution DAG of a machine learning pipeline used for speech recognition. The pipeline
consists of featurization and model building steps which are repeated for many iterations.

using a distributed architecture. We study distributed implementations of mini-batch SGD [59] and
block coordinate descent [162] designed for the message passing computing model [24]. The mes-
sage passing model consists of a number of independent machines connected by communication
network. When compared to the shared memory model, message passing is particularly beneficial
while modeling scenarios where the communication latency between machines is high.

Figure 2.3 shows how the two algorithms are implemented in a message passing model. We
begin by assuming that the training data is partitioned across the machines in the cluster. In the case
of mini-batch SGD we compute a sample of size b and correspondingly can launch computation
on the machines which have access to the sampled data. In each of these computation tasks,
we calculate the gradient for the data points in that partition. The results from these tasks are
aggregated to compute the final gradient.

In the case of block coordinate descent, a column block is partitioned across the cluster of
machines. Similar to SGD, we launch computation on machines in the form of tasks and in this
case the tasks compute XT

i Xi and XT
i Yi. The results are again aggregated to get the final values

that can then be plugged into the update rule shown in Algorithm 2.
From the above description we can see that both the executions have very similar phases from a

systems perspective. Broadly we can define each iteration to do the following steps. First the nec-
essary input data is read from storage (row or column samples) and then computation is performed
on this data. Following that the results from all the tasks are aggregated. Finally the model update
is computed and this captures one iteration of execution. To run the next iteration the update model
value from the previous iteration is typically required and hence this updated model is broadcasted
to all the machines.

These four phases of read, compute, aggregate and broadcast capture the execution workflow
for a diverse set of machine learning algorithms. This characterization is important from a sys-
tems perspective as instead of making improvements to specific algorithms we can instead develop
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Figure 2.3: Execution of Mini-batch SGD and Block coordinate descent on a distributed runtime.

more general solutions to accelerate each of these phases. We next look at how these phases are
implemented in distributed data processing frameworks.

2.3 Computation Model
One of the more popular computation models used by a number of recent distributed data pro-

cessing frameworks is the bulk-synchronous parallel (BSP) model [166]. In this model, the compu-
tation consists of a phase whereby all parallel nodes in the system perform some local computation,
followed by a blocking barrier that enables all nodes to communicate with each other, after which
the process repeats itself. The MapReduce [57] paradigm adheres to this model, whereby a map
phase can do arbitrary local computations, followed by a barrier in the form of an all-to-all shuffle,
after which the reduce phase can proceed with each reducer reading the output of relevant mappers
(often all of them). Systems such as Dryad [91, 182], Spark [184], and FlumeJava [39] extend
the MapReduce model to allow combining many phases of map and reduce after each other, and
also include specialized operators, e.g. filter, sum, group-by, join. Thus, the computation is a
directed acyclic graph (DAG) of operators and is partitioned into different stages with a barrier
between each of them. Within each stage, many map functions can be fused together as shown
in Figure 2.4. Further, many operators (e.g., sum, reduce) can be efficiently implemented [20] by
pre-combining data in the map stage and thus reducing the amount of data transferred.

Coordination at barriers greatly simplifies fault-tolerance and scaling in BSP systems. First,
the scheduler is notified at the end of each stage, and can reschedule tasks as necessary. This in
particular means that the scheduler can add parallelism at the end of each stage, and use additional
machines when launching tasks for the next stage. Furthermore, fault tolerance in these systems is
typically implemented by taking a consistent snapshot at each barrier. This snapshot can either be
physical, i.e., record the output from each task in a stage; or logical, i.e., record the computational
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Figure 2.4: Execution of a job when using the batch processing model. We show two iterations of execution
here. The left-hand side shows the various steps used to coordinate execution. The query being executed in
shown on the right hand side

dependencies for some data. Task failures can be trivially handled using these snapshots since the
scheduler can reschedule the task and have it read (or reconstruct) inputs from the snapshot.

However the presence of barriers results in performance limits when using the BSP model.
If we denote the time per iteration as T , then T cannot be set to adequately small values due
to how barriers are implemented in these systems. Consider a simple job consisting of a map
phase followed by a reduce phase (Figure 2.4). A centralized driver schedules all the map tasks
to take turns running on free resources in the cluster. Each map task then outputs records for each
reducer based on some partition strategy, such as hashing or sorting. Each task then informs the
centralized driver of the allocation of output records to the different reducers. The driver can then
schedule the reduce tasks on available cluster resources, and pass this metadata to each reduce task,
which then fetches the relevant records from all the different map outputs. Thus, each barrier in a
iteration requires communicating back and forth with the driver. Hence, if we aim for T to be too
low this will result in a substantial driver communication and scheduling overhead, whereby the
communication with the driver eventually dominates the processing time. In most systems, T is
limited to 0.5 seconds or more [179].

2.4 Related Work
We next survey some of the related research in the area of designing systems for large scale

machine learning. We describe other efforts to improve performance for data analytics workloads
and other system designs used for low latency execution. We also discuss performance modeling
and performance prediction techniques from prior work in systems and databases.
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2.4.1 Cluster scheduling
Cluster scheduling has been an area of active research and recent work has proposed tech-

niques to enforce fairness [70, 93], satisfy job constraints [71] and improve locality [93, 183].
Straggler mitigation solutions launch extra copies of tasks to mitigate the impact of slow running
tasks [13, 15, 178, 186]. Further, systems like Borg [173], YARN [17] and Mesos [88] schedule
jobs from different frameworks on a shared cluster. Prior work [135] has also identified the benefits
of shorter task durations and this has led to the development of distributed job schedulers such as
Sparrow [136], Apollo [30], etc. These scheduling frameworks focus on scheduling across jobs
while we study scheduling within a single machine learning job. To improve performance within
a job, techniques for improving data locality [14, 184], re-optimizing queries [103], dynamically
distributing tasks [130] and accelerating network transfers [49, 78] have been proposed. Prior
work [172] has also looked at the benefits of removing the barrier across shuffle stages to improve
performance. In this thesis we focus on machine learning jobs and how can exploit the specific
properties they have to get better performance.

2.4.2 Machine learning frameworks
Recently, a large body of work has focused on building cluster computing frameworks that sup-

port machine learning tasks. Examples include GraphLab [72, 117], Spark [184], DistBelief [56],
Tensorflow [3], Caffe [97], MLBase [105] and KeystoneML [157]. Of these, GraphLab and Spark
add support for abstractions commonly used in machine learning. Neither of these frameworks
provide any explicit system support for sampling. For instance, while Spark provides a sampling
operator, this operation is carried out entirely in application logic, and the Spark scheduler is obliv-
ious to the use of sampling. Further the BSP model in Spark introduces scheduling overheads as
discussed in Section 2.3. MLBase and KeystoneML present a declarative programming model to
simplify constructing machine learning applications. Our focus in this thesis is on how we can
accelerate the performance of the underlying execution engine and we seek to build systems that
are compatible with the APIs from KeystoneML. Finally, while Tensorflow, Caffe and DistBelief
are tuned to running large deep learning workloads [107], we focus on general design techniques
that can apply to a number of algorithms like SGD, BCD etc.

2.4.3 Continuous Operator Systems
While we highlighted BSP-style frameworks in Section 2.3, an alternate computation model

that is used is the dataflow [98] computation model with long running or continuous operators.
Dataflow models have been used to build database systems [73], streaming databases [2, 40]
and have been extended to support distributed execution in systems like Naiad [129], Stream-
Scope [116] and Flink [144]. In such systems, similar to BSP frameworks, user programs are
converted to a DAG of operators, and each operator is placed on a processor as a long running
task. A processor may contain a number of long running tasks. As data is processed, operators up-
date local state and messages are directly transferred from between operators. Barriers are inserted
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only when required by specific operators. Thus, unlike BSP-based systems, there is no scheduling
or communication overhead with a centralized driver. Unlike BSP-based systems, which require a
barrier at the end of a micro-batch, continuous operator systems do not impose any such barriers.

To handle machine failures, continuous operator systems typically use distributed checkpoint-
ing algorithms [41] to create consistent snapshots periodically. The execution model is flexible and
can accommodate either asynchronous [36] checkpoints (in systems like Flink) or synchronous
checkpoints (in systems like Naiad). Recent work [92] provides a more detailed description com-
paring these two approaches and also describes how the amount of state that is checkpointed can
be minimized. However checkpoint replay during recovery can be more expensive in this model.
In both synchronous and asynchronous approaches, whenever a node fails, all the nodes are rolled
back to the last consistent checkpoint and records are then replayed from this point. As the contin-
uous operators cannot be easily split into smaller components this precludes parallelizing recovery
across timesteps (as in the BSP model) and each continuous operator is recovered serially. In this
thesis we focus on re-using existing fault tolerance semantics from BSP systems and improving
performance for machine learning workloads.

2.4.4 Performance Prediction
There have been a number of recent efforts at modeling job performance in datacenters to

support SLOs or deadlines. Techniques proposed in Jockey [66] and ARIA [171] use historical
traces and dynamically adjust resource allocations in order to meet deadlines. Bazaar [95] proposed
techniques to model the network utilization of MapReduce jobs by using small subsets of data.
Projects like MRTuner [149] and Starfish [87] model MapReduce jobs at very fine granularity and
set optimal values for options like memory buffer sizes etc. Finally scheduling frameworks like
Quasar [60] try to estimate the scale out and scale up factor for jobs using the progress rate of
the first few tasks. In this thesis our focus is on modeling machine learning workloads and being
able to minimize the amount of time spent in developing such a model. In addition we aim to
extract performance characteristics that are not specific to MapReduce implementations and are
independent of the framework, number of stages of execution etc.

2.4.5 Database Query Optimization
Database query progress predictors [44, 127] also solve a performance prediction problem.

Database systems typically use summary statistics [146] of the data like cardinality counts to guide
this process. Further, these techniques are typically applied to a known set of relational operators.
Similar ideas have also been applied to linear algebra operators [89]. In this thesis we aim to
handle a large class of machine learning jobs where we only know high level properties of the
computation being run. Recent work has also looked at providing SLAs for OLTP [134] and
OLAP workloads [85] in the cloud and some of our motivation about modeling cloud computing
instances are also applicable to database queries.
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2.4.6 Performance optimization, Tuning
Recent work including Nimbus [119] and Thrill [23] has focused on implementing high-

performance BSP systems. Both systems claim that the choice of runtime (i.e., JVM) has a major
effect on performance, and choose to implement their execution engines in C++. Furthermore,
Nimbus similar to our work finds that the scheduler is a bottleneck for iterative jobs and uses
scheduling templates. However, during execution Nimbus uses mutable state and focuses on HPC
applications while we focus on improving adaptivity for machine learning workloads. On the other
hand Thrill focuses on query optimization in the data plane.

Ideas related to our approach to deployment, where we explore a space of possible configu-
rations and choose the best configuration, have been used in other applications like server bench-
marking [150]. Related techniques like Latin Hypercube Sampling have also been used to effi-
ciently explore file system design space [84]. Auto-tuning BLAS libraries [22] like ATLAS [51]
also solve a similar problem of exploring a state space efficiently to prescribe the best configura-
tion.
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Chapter 3

Modeling Machine Learning Jobs

Having looked at the main properties of machine learning workloads in Chapter 2, in this
chapter we study the problem of developing performance models for distributed machine learning
jobs. Using performance models we aim to understand how the running time changes as we modify
the input size and the cluster size used to run the workload. Our key contribution in this chapter is to
exploit the workload properties (§1.1) i.e., approximation, iteration, sampling and computational
structure to make it cheaper to build performance models.

Performance models are also useful in a cloud computing setting for choosing the right hard-
ware configuration. The choice of configuration depends on the user’s goals which typically in-
cludes either minimizing the running time given a budget or meeting a deadline while minimizing
the cost. One way to address this problem is developing a performance prediction framework that
can accurately predict the running time on a specified hardware configuration, given a job and its
input.

We propose, Ernest, a performance prediction framework that can provide accurate predictions
with low overhead. The main idea in Ernest is to run a set of instances of the machine learning
job on samples of the input, and use the data from these runs to create a performance model. This
approach has low overhead, as in general it takes much less time and resources to run the job
on samples than running the entire job. The reason this approach works is that many machine
learning workloads have a simple structure and the dependence between their running times and
the input sizes or number of nodes is in general characterized by a relatively small number of
smooth functions.

The cost and utility of training data points collected is important for low-overhead prediction
and we address this problem using optimal experiment design [139], a statistical technique that
allows us to select the most useful data points for training. We augment experiment design with a
cost model and this helps us find the training data points to explore within a given budget.

As our methods are also applicable to other workloads like graph processing and scientific
workloads in genomics, we collectively address these workloads as advanced analytics workloads.
We evaluate Ernest using a number of workloads including (a) several machine learning algorithms
that are part of Spark MLlib [124], (b) queries from GenBase [160] and I/O intensive transforma-
tions using ADAM [133] on a full genome, and (c) a speech recognition pipeline that achieves
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Figure 3.1: Memory bandwidth and network bandwidth comparison across instance types

state-of-the-art results [90]. Our evaluation shows that our average prediction error is under 20%
and that this is sufficient for choosing the appropriate number or type of instances. Our train-
ing overhead for long-running jobs is less than 5% and we also find that using experiment design
improves prediction error for some algorithms by 30− 50% over a cost-based scheme

3.1 Performance Prediction Background
We first present an overview of different approaches to performance prediction. We then dis-

cuss recent hardware trends in computation clusters that make this problem important and finally
discuss some of the computation and communication patterns that we see in machine learning
workloads.

3.1.1 Performance Prediction
Performance modeling and prediction have been used in many different contexts in various

systems [21, 66, 131]. At a high level performance modeling and prediction proceeds as follows:
select an output or response variable that needs to be predicted and the features to be used for
prediction. Next, choose a relationship or a model that can provide a prediction for the output
variable given the input features. This model could be rule based [25, 38] or use machine learning
techniques [132, 178] that build an estimator using some training data. We focus on machine
learning based techniques in this chapter and we next discuss two major approaches in modeling
that influences the training data and machine learning algorithms used.
Performance counters: Performance counter based approaches typically use a large number of
low level counters to try and predict application performance characteristics. Such an approach has
been used with CPU counter for profiling [16], performance diagnosis [33, 180] and virtual ma-
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chine allocation [132]. A similar approach has also been used for analytics jobs where the MapRe-
duce counters have been used for performance prediction [171] and straggler mitigation [178].
Performance-counter based approaches typically use advanced learning algorithms like random
forests, SVMs. However as they use a large number of features, they require large amounts of
training data and are well suited for scenarios where historical data is available.
System modeling: In the system modeling approach, a performance model is developed based on
the properties of the system being studied. This method has been used in scientific computing [21]
for compilers [5], programming models [25, 38]; and by databases [44, 127] for estimating the
progress made by SQL queries. System design based models are usually simple and interpretable
but may not capture all the execution scenarios. However one advantage of this approach is that
only a small amount of training data is required to make predictions.

In this chapter, we look at how to perform efficient performance prediction for large scale
advanced analytics. We use a system modeling approach where we build a high-level end-to-end
model for advanced analytics jobs. As collecting training data can be expensive, we further focus
on how to minimize the amount of training data required in this setting. We next survey recent
hardware and workload trends that motivate this problem.

3.1.2 Hardware Trends
The widespread adoption of cloud computing has led to a large number of data analysis jobs

being run on cloud computing platforms like Amazon EC2, Microsoft Azure and Google Compute
Engine. In fact, a recent survey by Typesafe of around 500 enterprises [164] shows that 53% of
Apache Spark users deploy their code on Amazon EC2. However using cloud computing instances
comes with its own set of challenges. As cloud computing providers use virtual machines for
isolation between users, there are a number of fixed-size virtual machine options that users can
choose from. Instance types vary not only in capacity (i.e. memory size, number of cores etc.)
but also in performance. For example, we measured memory bandwidth and network bandwidth
across a number of instance types on Amazon EC2. From Figure 3.1(a) we can see that the smaller
instances i.e. large or xlarge have the highest memory bandwidth available per core while
Figure 3.1(b) shows that 8xlarge instances have the highest network bandwidth available per
core. Based on our experiences with Amazon EC2, we believe these performance variations are
not necessarily due to poor isolation between tenants but are instead related to how various instance
types are mapped to shared physical hardware.

The non-linear relationship between price vs. performance is not only reflected in micro-
benchmarks but can also have a significant effect on end-to-end performance. For example, we
use two machine learning kernels: (a) A least squares solver used in convex optimization [61] and
(b) a matrix multiply operation [167], and measure their performance for similar capacity config-
urations across a number of instance types. The results (Figure 3.3(a)) show that picking the right
instance type can improve performance by up to 1.9x at the same cost for the least squares solver.
Earlier studies [86,175] have also reported such performance variations for other applications like
SQL queries, key-value stores. These performance variations motivate the need for a performance
prediction framework that can automate the choice of hardware for a given computation.
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Figure 3.2: Scaling behaviors of commonly found communication patterns as we increase the number of
machines.

Finally, performance prediction is important not just in cloud computing but it is also useful
in other shared computing scenarios like private clusters. Cluster schedulers [17] typically try
to maximize utilization by packing many jobs on a single machine and predicting the amount
of memory or number of CPU cores required for a computation can improve utilization [60].
Next, we look at workload trends in large scale data analysis and how we can exploit workload
characteristics for performance prediction.
Workload Properties: As discussed in Chapter 2, the last few years have seen the growth of
advanced analytics workloads like machine learning, graph processing and scientific analyses on
large datasets. Advanced analytics workloads are commonly implemented on top of data process-
ing frameworks like Hadoop [57], Naiad [129] or Spark [184] and a number of high level libraries
for machine learning [18, 124] have been developed on top of these frameworks. A survey [164]
of Apache Spark users shows that around 59% of them use the machine learning library in Spark
and recently launched services like Azure ML [125] provide high level APIs which implement
commonly used machine learning algorithms.

Advanced analytics workloads differ from other workloads like SQL queries or stream process-
ing in a number of ways (Section 1.1). These workloads are typically numerically intensive, i.e.
performing floating point operations like matrix-vector multiplication or convolutions [52], and
thus are sensitive to the number of cores and memory bandwidth available. Further, such work-
loads are also often iterative and repeatedly perform parallel operations on data cached in memory
across a cluster. Advanced analytics jobs can also be long-running: for example, to obtain the
state-of-the-art accuracy on tasks like image recognition [56] and speech recognition [90], jobs are
run for many hours or days.

Since advanced analytics jobs run on large datasets are expensive, we observe that developers
have focused on algorithms that are scalable across machines and are of low complexity (e.g., linear
or quasi-linear) [29]. Otherwise, using these algorithms to process huge amounts of data might be
infeasible. The natural outcome of these efforts is that these workloads admit relatively simple
performance models. Specifically, we find that the computation required per data item remains the
same as we scale the computation.
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Figure 3.3: Performance comparison of a Least Squares Solver (LSS) job and Matrix Multiply (MM) across
similar capacity configurations.

Further, we observe that only a few communication patterns repeatedly occur in such jobs.
These patterns (Figure 3.2) include (a) the all-to-one or collect pattern, where data from all the
partitions is sent to one machine, (b) tree-aggregation pattern where data is aggregated using a
tree-like structure, and (c) a shuffle pattern where data goes from many source machines to many
destinations. These patterns are not specific to advanced analytics jobs and have been studied
before [24,48]. Having a handful of such patterns means that we can try to automatically infer how
the communication costs change as we increase the scale of computation. For example, assuming
that data grows as we add more machines (i.e., the data per machine is constant), the time taken for
the collect increases as O(machines) as a single machine needs to receive all the data. Similarly
the time taken for a binary aggregation tree grows as O(log(machines)).

Finally we observe that many algorithms are iterative in nature and that we can also sample the
computation by running just a few iterations of the algorithm. Next we will look at the design of
the performance model.

3.2 Ernest Design
In this section we outline a model for predicting execution time of advanced analytics jobs. This

scheme only uses end-to-end running times collected from executing the job on smaller samples
of the input and we discuss techniques for model building and data collection.

At a high level we consider a scenario where a user provides as input a parallel job (written
using any existing data processing framework) and a pointer to the input data for the job. We do
not assume the presence of any historical logs about the job and our goal here is to build a model
that will predict the execution time for any input size, number of machines for this given job. The
main steps in building a predictive model are (a) determining what training data points to collect
(b) determining what features should be derived from the training data and (c) performing feature
selection to pick the simplest model that best fits the data. We discuss all three aspects below.
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3.2.1 Features for Prediction
One of the consequences of modeling end-to-end unmodified jobs is that there are only a few

parameters that we can change to observe changes in performance. Assuming that the job, the
dataset and the machine types are fixed, the two main features that we have are (a) the number
of rows or fraction of data used (scale) and (b) the number of machines used for execution. Our
goal in the modeling process is to derive as few features as required for the amount of training data
required grows linearly with the number of features.

To build our model we add terms related to the computation and communication patterns dis-
cussed in §2.1. The terms we add to our linear model are (a) a fixed cost term which represents
the amount of time spent in serial computation (b) the interaction between the scale and the in-
verse of the number of machines; this is to capture the parallel computation time for algorithms
whose computation scales linearly with data, i.e., if we double the size of the data with the same
number of machines, the computation time will grow linearly (c) a log(machines) term to model
communication patterns like aggregation trees (d) a linear term O(machines) which captures the
all-to-one communication pattern and fixed overheads like scheduling / serializing tasks (i.e. over-
heads that scale as we add more machines to the system). Note that as we use a linear combination
of non-linear features, we can model non-linear behavior as well.

Thus the overall model we are fitting tries to learn values for θ0, θ1, θ2, and θ3 in the formula

time = θ0 + θ1 × (scale× 1

machines
)+

θ2 × log(machines)+

θ3 ×machines (3.1)

Given these features, we then use a non-negative least squares (NNLS) solver to find the model
that best fits the training data. NNLS fits our use case very well as it ensures that each term con-
tributes some non-negative amount to the overall time taken. This avoids over-fitting and also
avoids corner cases where say the running time could become negative as we increase the number
of machines. NNLS is also useful for feature selection as it sets coefficients which are not relevant
to a particular job to zero. For example, we trained a NNLS model using 7 data points on all of
the machine learning algorithms that are a part of MLlib in Apache Spark 1.2. The final model
parameters are shown in Table 3.1. From the table we can see two main characteristics: (a) that
not all features are used by every algorithm and (b) that the contribution of each term differs for
each algorithm. These results also show why we cannot reuse models across jobs.

Additional Features: While the features used above capture most of the patterns that we see in
jobs, there could other patterns which are not covered. For example in linear algebra operators
like QR decomposition the computation time will grow as scale2/machines if we scale the number of
columns. We discuss techniques to detect when the model needs such additional terms in §3.2.4.
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Benchmark intercept scale/mc mc log(mc)
spearman 0.00 4887.10 0.00 4.14
classification 0.80 211.18 0.01 0.90
pca 6.86 208.44 0.02 0.00
naive.bayes 0.00 307.48 0.00 1.00
summary stats 0.42 39.02 0.00 0.07
regression 0.64 630.93 0.09 1.50
als 28.62 3361.89 0.00 0.00
kmeans 0.00 149.58 0.05 0.54

Table 3.1: Models built by Non-Negative Least Squares for MLlib algorithms using r3.xlarge instances.
Not all features are used by every algorithm.

3.2.2 Data collection
The next step is to collect training data points for building a predictive model. For this we

use the input data provided by the user and run the complete job on small samples of the data and
collect the time taken for the job to execute. For iterative jobs we allow Ernest to be configured
to run a certain number of iterations (§3.3). As we are not concerned with the accuracy of the
computation we just use the first few rows of the input data to get appropriately sized inputs.

How much training data do we need?: One of the main challenges in predictive modeling is
minimizing the time spent on collecting training data while achieving good enough accuracy. As
with most machine learning tasks, collecting more data points will help us build a better model
but there is time and a cost associated with collecting training data. As an example, consider the
model shown in Table 3.1 for kmeans. To train this model we used 7 data points and we look at
the importance of collecting additional data by comparing two schemes: in the first scheme we
collect data in an increasing order of machines and in the second scheme we use a mixed strategy
as shown in Figure 3.4. From the figure we make two important observations: (a) in this case,
the mixed strategy gets to a lower error quickly; after three data points we get to less than 15%
error. (b) We see a trend of diminishing returns where adding more data points does not improve
accuracy by much. We next look at techniques that will help us find how much training data is
required and what those data points should be.

3.2.3 Optimal Experiment Design
To improve the time taken for training without sacrificing the prediction accuracy, we outline

a scheme based on optimal experiment design, a statistical technique that can be used to minimize
the number of experiment runs required. In statistics, experiment design [139] refers to the study
of how to collect data required for any experiment given the modeling task at hand. Optimal
experiment design specifically looks at how to choose experiments that are optimal with respect to
some statistical criterion. At a high-level the goal of experiment design is to determine data points
that can give us most information to build an accurate model. some subset of training data points
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and then determine how far a model trained with those data points is from the ideal model.
More formally, consider a problem where we are trying to fit a linear model X given measure-

ments y1, . . . , ym and features a1, . . . , am for each measurement. Each feature vector could in turn
consist of a number of dimensions (say n dimensions). In the case of a linear model we typically
estimate X using linear regression. We denote this estimate as X̂ and X̂ − X is the estimation
error or a measure of how far our model is from the true model.

To measure estimation error we can compute the Mean Squared Error (MSE) which takes into
account both the bias and the variance of the estimator. In the case of the linear model above if we
have m data points each having n features, then the variance of the estimator is represented by the

n×n covariance matrix (
m∑
i=1

aia
T
i )
−1. The key point to note here is that the covariance matrix only

depends on the feature vectors that were used for this experiment and not on the model that we are
estimating.

In optimal experiment design we choose feature vectors (i.e. ai) that minimize the estimation
error. Thus we can frame this as an optimization problem where we minimize the estimation error
subject to constraints on the number of experiments. More formally we can set λi as the fraction
of times an experiment is chosen and minimize the trace of the inverse of the covariance matrix:

Minimize tr((
m∑
i=1

λiaia
T
i )
−1)

subject to λi ≥ 0, λi ≤ 1

Using Experiment Design: The predictive model described in the previous section can be formu-
lated as an experiment design problem. Given bounds for the scale and number of machines we
want to explore, we can come up with all the features that can be used. For example if the scale
bounds range from say 1% to 10% of the data and the number of machine we can use ranges from 1
to 5, we can enumerate 50 different feature vectors from all the scale and machine values possible.
We can then feed these feature vectors into the experiment design setup described above and only
choose to run those experiments whose λ values are non-zero.
Accounting for Cost: One additional factor we need to consider in using experiment design is
that each experiment we run costs a different amount. This cost could be in terms of time (i.e. it
is more expensive to train with larger fraction of the input) or in terms of machines (i.e. there is a
fixed cost to say launching a machine). To account for the cost of an experiment we can augment
the optimization problem we setup above with an additional constraint that the total cost should
be lesser than some budget. That is if we have a cost function which gives us a cost ci for an

experiment with scale si and mi machines, we add a constraint to our solver that
m∑
i=1

ciλi ≤ B

where B is the total budget. For the rest of this chapter we use the time taken to collect training
data as the cost and ignore any machine setup costs as we usually amortize that over all the data
we need to collect. However we can plug-in in any user-defined cost function in our framework.
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Figure 3.4: Comparison of different strategies used to collect training data points for KMeans. The labels
next to the data points show the (number of machines, scale factor) used.

Residual Sum Percentage Err
of Squares Median Max

without
√
n 1409.11 12.2% 64.9%

with
√
n 463.32 5.7% 26.5%

Table 3.2: Cross validation metrics comparing different models for Sparse GLM run on the splice-site
dataset.

3.2.4 Model extensions
The model outlined in the previous section accounts for the most common patterns we see in

advanced analytics applications. However there are some complex applications like randomized
linear algebra [82] which might not fit this model. For such scenarios we discuss two steps: the
first is adding support in Ernest to detect when the model is not adequate and the second is to easily
allow users to extend the model being used.

Cross-Validation: The most common technique for testing if a model is valid is to use hypothesis
testing and compute test statistics (e.g., using the t-test or the chi-squared test) and confirm the
null hypothesis that data belongs to the distribution that the model describes. However as we use
non-negative least squares (NNLS) the residual errors are not normally distributed and simple tech-
niques for computing confidence limits, p-values are not applicable. Thus we use cross-validation,
where subsets of the training data can be used to check if the model will generalize well. There
are a number of methods to do cross-validation and as our training data size is small, we use a
leave-one-out-cross-validation scheme in Ernest. Specifically if we have collected m training data
points, we perform m cross-validation runs where each run uses m− 1 points as training data and
tests the model on the left out data point. across the runs.
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Model extension example: As an example, we consider the GLM classification implementation
in Spark MLLib for sparse datasets. In this workload the computation is linear but the aggregation
uses two stages (instead of an aggregation tree) where the first aggregation stage has

√
n tasks for

n partitions of data and the second aggregation stage combines the output of
√
n tasks using one

task. This communication pattern is not captured in our model from earlier and the results from
cross validation using our original model are shown in Table 3.2. As we can see in the table both
the residual sum of squares and the percentage error in prediction are high for the original model.
Extending the model in Ernest with additional terms is simple and in this case we can see that
adding the

√
n term makes the model fit much better. In practice we use a configurable threshold

on the percentage error to determine if the model fit is poor. We investigate the end-to-end effects
of using a better model in §3.5.6.

3.3 Ernest Implementation
Ernest is implemented using Python as multiple modules. The modules include a job submis-

sion tool that submits training jobs, a training data selection process which implements experiment
design using a CVX solver [74, 75] and finally a model builder that uses NNLS from SciPy [100].
Even for a large range of scale and machine values we find that building a model takes only a few
seconds and does not add any overhead. In the rest of this section we discuss the job submission
tool and how we handle sparse datasets, stragglers.

3.3.1 Job Submission Tool
Ernest extends existing job submission API [155] that is present in Apache Spark 1.2. This

job submission API is similar to Hadoop’s Job API [80] and similar job submission APIs exist
for dedicated clusters [142, 173] as well. The job submission API already takes in the binary that
needs to run (a JAR file in the case of Spark) and the input specification required for collecting
training data.

We add a number of optional parameters which can be used to configure Ernest. Users can
configure the minimum and maximum dataset size that will be used for training. Similarly the
maximum number of machines to be used for training can also be configured. Our prototype
implementation of Ernest uses Amazon EC2 and we amortize cluster launch overheads across
multiple training runs i.e., if we want to train using 1, 2, 4 and 8 machines, we launch a 8 machine
cluster and then run all of these training jobs in parallel.

The model built using Ernest can be used in a number of ways. In this chapter we focus on a
cloud computing use case where we can choose the number and type of EC2 instances to use for a
given application. To do this we build one model per instance type and explore different sized in-
stances (i.e. r3.large,...r3.8xlarge). After training the models we can answer higher level questions
like selecting the cheapest configuration given a time bound or picking the fastest configuration
given a budget. One of the challenges in translating the performance prediction into a higher-level
decision is that the predictions could have some error associated with them. To help with this, we
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provide the cross validation results ( §3.2.4) along with the prediction and these can be used to
compute the range of errors observed on training data. Additionally we plan to provide support for
visualizing the scaling behavior and Figure 3.14(b) in §3.5.6 shows an example.

3.3.2 Handling Sparse Datasets
One of the challenges in Ernest is to deal with algorithms that process sparse datasets. Because

of the difference in sparsity across data items, each record could take different time to process.
We observe that operations on sparse datasets depend on the number of non-zero entries and thus
if we can sample the data such that we use a representative sparse subset during training, we
should be able to apply modeling techniques described before. However in practice, we don’t see
this problem as even if there is a huge skew in sparsity across rows, the skew across partitions is
typically smaller.

To illustrate, we chose three of the largest sparse datasets that are part of the LibSVM reposi-
tory [153, 181] and we measured the maximum number of non-zero entries present in every parti-
tion after loading the data into HDFS. We normalize these values across partitions and a CDF of
partition densities is shown in Figure 3.5. We observe the the difference in sparsity between the
most loaded partition and the least loaded one is less than 35% for all datasets and thus picking
a random sample of partitions [168] is sufficient to model computation costs. techniques [109]
which attempt to reduce skewness across partitions will also help in alleviating this problem.

3.3.3 Straggler mitigation by over-allocation
The problem of dealing with stragglers, or tasks which take much longer than other tasks is

one of the main challenges in large scale data analytics [11, 58, 178]. Using cloud computing
instances could further aggravate the problem due to differences in performance across instances.
One technique that we use in Ernest to overcome variation among instances is to launch a small
percentage of extra instances and then discard the worst performing among them before running the
user’s job. We use memory bandwidth and network bandwidth measurements (§3.1) to determine
the slowest instances.
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In our experiences with Amazon EC2 we find that even having a few extra instances can be
more than sufficient in eliminating the slowest machines. To demonstrate this, we set the target
cluster size as N = 50 r3.2xlarge instances and have Ernest automatically allocate a small
percentage of extra nodes. We then run STREAM [122] at 30 second intervals and collect mem-
ory bandwidth measurements on all instances. Based on the memory bandwidths observed, we
eliminate the slowest nodes from the cluster. Figure 3.6 shows for each allocation strategy, the
CDF of the memory bandwidth obtained when picking the best N instances from all the instances
allocated. We see that Ernest only needs to allocate as few as 2 (or 4%) extra instances to eliminate
the slowest stragglers and improve the target cluster’s average memory bandwidth from 24.7 GB/s
to 26 GB/s. beneficial for users with a larger budget who wish to guarantee an even higher level of
cluster performance.

3.4 Ernest Discussion
In this section we look at when a model should be retrained and also discuss the trade-offs

associated with including more fine-grained information in Ernest.

3.4.1 Model reuse
The model we build using Ernest predicts the performance for a given job for a specific dataset

and a target cluster. One of the questions while using Ernest is to determine when we need to
retrain the model. We consider three different circumstances here: changes in code, changes in
cluster behavior and changes in data.
Code changes: If different jobs use the same dataset, the cluster and dataset remain the same, but
the computation being run changes. As Ernest treats the job being run as a black-box, we will need
to retrain the model for any changes to the code. This can be detected by computing hashes of the
binary files.
Variation in Machine Performance: One of the concerns with using cloud computing based
solutions like EC2 is that there could be performance variations over time even when a job is
using the same instance types and number of instances. We investigated if this was an issue by
running two machine learning jobs GLM regression and NaiveBayes repeatedly on a cluster of 64
r3.xlarge instances. The time taken per run of each algorithm over a 24 hour period is shown
in Figure 3.7. We see that the variation over time is very small for both workloads and the standard
deviation is less than 2% of the mean. Thus we believe that Ernest models should remain relevant
across relatively long time periods.
Changes in datasets: As Ernest uses small samples of the data for training, the model is directly
applicable as the dataset grows. When dealing with newly collected data, there are some aspects
of the dataset like the number of data items per block and the number of features per data item that
should remain the same for the performance properties to be similar. As some of these properties
might be hard to measure, our goal is to make the model building overhead small so that Ernest
can be re-run for newly collected datasets.
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Figure 3.8: Prediction accuracy using Ernest for 9 machine learning algorithms in Spark MLlib.
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Figure 3.9: Prediction accuracy for GenBase, TIMIT and Adam queries.

3.4.2 Using Per-Task Timings
In the model described in the previous sections, we only measure the end-to-end running time

of the whole job. Existing data processing frameworks already measure fine grained metrics [79,
154] and we considered integrating task-level metrics in Ernest. One major challenge we faced
here is that in the BSP model a stage only completes when its last task completes. Thus rather
than predicting the average task duration, we need to estimate the maximum task duration and this
requires more complex non-parametric methods like Bootstrap [62]. Further, to handle cases where
the number of tasks in a stage are greater than the number of cores available, we need adapt our
estimate based on the number of waves [14] of tasks. We found that there were limited gains from
incorporating task-level information given the additional complexity. While we continue to study
ways to incorporate new features, we found that simple features used in predicting end-to-end
completion time are more robust.

3.5 Ernest Evaluation
We evaluate how well Ernest works by using two metrics: the prediction accuracy and the

overhead of training for long-running machine learning jobs. In experiments where we measure
accuracy, or how close a prediction is to the actual job completion time, we use the ratio of the
predicted job completion time to the actual job completion time Predicted Time/Actual Time as our metric.
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The main results from our evaluation are:

• Ernest’s predictive model achieves less than 20% error on most of the workloads with less
than 5% overhead for long running jobs.(§3.5.2)

• Using the predictions from Ernest we can get up to 4x improvement in price by choosing the
optimal number of instances for the speech pipeline. (§3.5.3)

• Given a training budget, experiment design improves accuracy by 30% − 50% for some
workloads when compared to a cost-based approach. (§3.5.5)

• By extending the default model we are also able to accurately predict running times for
sparse and randomized linear algebra operations. (§3.5.6)

3.5.1 Workloads and Experiment Setup
We use five workloads to evaluate Ernest. Our first workload consists of 9 machine learning

algorithms that are part of MLlib [124]. For algorithms designed for dense inputs, the performance
characteristics are independent of the data and we use synthetically generated data with 5 million
examples. We use 10K features per data point for regression, classification, clustering and 1K
features for the linear algebra and statistical benchmarks.

To evaluate Ernest on sparse data, we use splice-site and kdda, two of the largest sparse
classification datasets that are part of LibSVM [42]. The splice-site dataset contains 10M
data points with around 11M features and the kdda dataset contains around 6.7M data points
with around 20M features. To see how well Ernest performs on end-to-end pipelines, we use
GenBase, ADAM and a speech recognition pipeline (§3.1). We run regression and SVD queries
from GenBase on the Large dataset [69] (30K genes for 40K patients). For ADAM we use the
high coverage NA12878 full genome from the 1000 Genomes project [1] and run four transfor-
mations: sorting, marking duplicate reads, base quality score recalibration and quality validation.
The speech recognition pipeline is run on the TIMIT [90] dataset using an implementation from
KeystoneML [156]. All datasets other than the one for ADAM are cached in memory before the
experiments begin and we do warmup runs to trigger the JVM’s just-in-time compilation. We use
r3.xlarge machines from Amazon EC2 (each with 4 vCPUs and 30.5GB memory) unless oth-
erwise specified. Our experiments were run with Apache Spark 1.2. Finally all our predictions
were compared against at least three actual runs and the values in our graphs show the average
with error bars indicating the standard deviation.

3.5.2 Accuracy and Overheads
Prediction Accuracy: We first measure the prediction accuracy of Ernest using the nine algo-
rithms from MLlib. In this experiment we configure Ernest to use between 1 and 16 machines
for training and sample between 0.1% to 10% of the dataset. We then predict the performance for
cases where the algorithms use the entire dataset on 45 and 64 machines. The prediction accuracies
shown in Figure 3.8 indicate that Ernest’s predictions are within 12% of the actual running time
for most jobs. The two exceptions where the error is higher are the summary statistics and
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Figure 3.10: Training times vs. accuracy for TIMIT and MLlib Regression. Percentages with respect to
actual running times are shown.

glm-classification job. In the case of glm-classification, we find that the train-
ing data and the actual runs have high variance (error bars in Figure 3.8 come from this) and that
Ernest’s prediction is within the variance of the collected data. In the case of summary statistics
we have a short job where the absolute error is low: the actual running time is around 6 seconds
while Ernest’s prediction is around 8 seconds.

Next, we measure the prediction accuracy on GenBase and the TIMIT pipeline; the results are
shown in Figure 3.9. Since the GenBase dataset is relatively small (less than 3GB in text files), we
partition it into 40 splits, and restrict Ernest to use up to 6 nodes for training and predict the actual
running times on 16 and 20 machines. As in the case of MLlib, we find the prediction errors to
be below 20% for these workloads. Finally, the prediction accuracy for four transformations on
ADAM show a similar trend and are shown in Figure 3.9(c). We note that the ADAM queries read
input and write output to the distributed filesystem (HDFS) in these experiments and that these
queries are also shuffle heavy. We find that Ernest is able to capture the I/O overheads and the
reason for this is that the time to read / write a partition of data remains similar as we scale the
computation.

Our goal in building Ernest is not to enforce strict SLOs but to enable low-overhead predictions
that can be used to make coarse-grained decisions. We discuss how Ernest’s prediction accuracy
is sufficient for decisions like how many machines (§3.5.3) and what type of machines (§3.5.4) to
use in the following sections.
Training Overheads: One of the main goals of Ernest is to provide performance prediction with
low overhead. To measure the overhead in training we consider two long-running machine learning
jobs: the TIMIT pipeline run for 50 iterations, and MLlib Regression with a mini-batch SGD solver
run for 500 iterations. We configure Ernest to run 5% of the overall number of iterations during
training and then linearly scale its prediction by the target number of iterations. Figures 3.10(a)
and 3.10(b) show the times taken to train Ernest and the actual running times when run with 45
or 64 machines on the cluster. From the figures, we observe that for the regression problem the
training time is below 4% of the actual running time and that Ernest’s predictions are within 14%.
For the TIMIT pipeline, the training overhead is less than 4.1% of the total running time. The
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Figure 3.11: Time per iteration as we vary the number of instances for the TIMIT pipeline and MLlib
Regression. Time taken by actual runs are shown in the plot.

low training overhead with these applications shows that Ernest efficiently handles long-running,
iterative analytics jobs.

3.5.3 Choosing optimal number of instances
When users have a fixed-time or fixed-cost budget it is often tricky to figure out how many

instances should be used for a job as the communication vs. computation trade-off is hard to deter-
mine for a given workload. In this section, we use Ernest’s predictions to determine the optimum
number of instances. We consider two workloads from the previous section: the TIMIT pipeline
and GLM regression, but here we use subsets of the full data to focus on how the job completion
time varies as we increase the number of machines to 641. Using the same models trained in the
previous section, we predict the time taken per iteration across a wide range of number of machines
(Figures 3.11(a) and 3.11(b)). We also show the actual running time to validate the predictions.

Consider a case where a user has a fixed-time budget of 1 hour (3600s) to say run 40 iterations
of the TIMIT pipeline and an EC2 instance limit of 64 machines. Using Figure 3.11(a) and taking
our error margin into account, Ernest is able to infer that launching 16 instances is sufficient to
meet the deadline. Given that the cost of an r3.xlarge instance is $0.35/hour, a greedy strategy
of using all the 64 machines would cost $22.4, while using the 16 machines as predicted by Ernest
would only cost $5.6, a 4x difference. We also found that the 15% prediction error doesn’t impact
the decision as actual runs show that 15 machines is the optimum. Similarly, if the user has a
budget of $15 then we can infer that using 40 machines would be faster than using 64 machines.

3.5.4 Choosing across instance types
We also apply Ernest to choose the optimal instance type for a particular workload; similar to

the scenario above, we can optimize for cost given a deadline or optimize for performance given
a budget. As an example of the benefits of choosing the right instance type, we re-run the TIMIT
workload on three instance types (r3.xlarge, r3.2xlarge and r3.4xlarge) and we build

1We see similar scaling properties in the entire data, but we use a smaller dataset to highlight how Ernest can handle
scenarios where the algorithm does not scale well.
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Figure 3.13: Time taken for Sort and MarkDup workloads on ADAM across different instance types.

a model for each instance type. With these three models, Ernest predicts the expected perfor-
mance on same-cost configurations, and then picks the cheapest one. Our results (Figure 3.12)
show that choosing the smaller r3.xlarge instances would actually be 1.2x faster than using
the r3.4xlarge instances, while incurring the same cost. Similar to the previous section, the
prediction error does not affect our decision here and Ernest’s predictions choose the appropriate
instance type.

We next look at how choosing the right instance type affects the performance of ADAM work-
loads that read and write data from disk. We compare m3.2xlarge instances that have two SSDs
but cost $0.532 per hour and r3.xlarge instances that have one SSD and cost $0.35 an hour2.
Results from using Ernest on 45 and 64 machines with these instance types is shown in Figure 3.13.
From the we can see that using m3.2xlarge instances leads to better performance and that sim-
ilar to the memory bandwidth analysis ( §3.1.2) there are non-linear price-performance trade-offs.
For example, we see that for the mark duplicates query, using 64 m3.2xlarge instances provides
a 45% performance improvement over 45 r3.xlarge instances while only costing 20% more.

2Prices as of September 2015
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Figure 3.15: Prediction accuracy improvements when using model extensions in Ernest. Workloads used
include sparse GLM classification using KDDA, splice-site datasets and a random projection linear algebra
job.

3.5.5 Experiment Design vs. Cost-based
We next evaluate the benefits of using optimal experiment design in Ernest. We compare ex-

periment design to a greedy scheme where all the candidate training data points are sorted in
increasing order of cost and we pick training points to match the cost of the points chosen in ex-
periment design. We then train models using both configurations. A comparison of the prediction
accuracy on MLlib and TIMIT workloads is shown in Figure 3.14(a).

From the figure, we note that for some workloads (e.g. KMeans) experiment design and the
cost-based approach achieve similar prediction errors. However, for the Regression and TIMIT
workloads, Ernest’s experiment design models perform 30%− 50% better than the cost-based ap-
proach. The cost-based approach fails because when using just the cheapest training points, the
training process is unable to observe how different stages of the job behave as scale and number of
machines change. For example, in the case of TIMIT pipeline, the cost-based approach explores
points along a weak scaling curve where both data size and number of machines increase, thus it is
unable to model how the Solver stage scales when the amount of data is kept constant. Ernest’s op-
timal experiment design mechanism successfully avoids this and chooses the most useful training
points.
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3.5.6 Model Extensions
We also measure the effectiveness of the model extensions proposed in §3.2.4 on two work-

loads: GLM classification run on sparse datasets (§3.3.2) and a randomized linear algebra work-
load that has non-linear computation time [82]. Figure 3.15 shows the prediction error for the
default model and the error after the model is extended: with a

√
n term for the Sparse GLM and a

nlog2n
mc

term which is the computation cost of the random projection. As we can see from the figure,
using the appropriate model makes a significant difference in prediction error.

To get a better understanding of how different models can affect prediction error we use the
KDDA dataset and plot the predictions from both models as we scale from 2 to 200 machines
(Figure 3.14(b)). From the figure we can see that the extending the model with

√
n ensures that

the scaling behavior is captured accurately and that the default model can severely over-predict (at
2 machines and 200 machines) or under-predict (32 machines). Thus, while the default model in
Ernest can capture a large number of workloads we can see that making simple model extensions
can also help us accurately predict more complex workloads.

3.6 Ernest Conclusion
The rapid adoption of advanced analytics workloads makes it important to consider how these

applications can be deployed in a cost and resource-efficient fashion. In this chapter, we stud-
ied the problem of performance prediction and show how simple models can capture computation
and communication patterns. Using these models we have built Ernest, a performance predic-
tion framework that intelligently chooses training points to provide accurate predictions with low
overhead.
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Chapter 4

Low-Latency Scheduling

Based on the performance model developed in Chapter 3, we see that the time taken can be
divided into three main components: the time spent in parallel computation, the time spent in com-
munication for operations like shuffle, broadcast and finally the time spent in coordination imposed
by the data processing framework. We broadly classify the the computation and communication
costs as being a part of the data plane and the coordination overheads being a part of the control
plane.

In this chapter we consider the control plane of distributed analytics workloads and study how
we can improve performance by reducing coordination overheads. These techniques are especially
relevant for workloads that require low-latency execution. Examples of such workloads include
iterative numerical methods (e.g., stochastic gradient descent (SGD) [29] and conjugate gradient
descent) and streaming data processing (e.g., processing a stream of tweets [108] or updates from
sensors). These workloads are characterized by stages that process a small amount of data and
can execute in milliseconds. Each job is typically composed of a large number of such stages that
represent iterations of the same computation.

As stages become shorter and cluster sizes increase to provide more parallelism, the overhead
of centralized coordination for each stage in the BSP model becomes significant. As a result,
recent work, e.g., Naiad [129], Flink [144], etc., has proposed building systems with long running
operators for low-latency streaming and iterative workloads. These systems typically use stateful,
long-running tasks on each machine and thus eliminate the centralized coordination overheads
imposed by BSP. However, this comes at a cost: since the operators are stateful, these systems must
rely on complex (and expensive) techniques like distributed checkpointing [41] for fault tolerance.
Furthermore, common scheduling strategies for straggler mitigation [11], data locality [14,57], etc.
rely on tasks being short lived (so they can be redistributed among machines) and cannot easily be
adopted for such models.

In this chapter we ask if we can meet the latency requirements of iterative and streaming appli-
cations, while still retaining the simple programming model and fault-tolerance provided by BSP.
Our insight in this work is that while low latency workloads need execution granularity of few
milliseconds, it is sufficient to provide scheduling decisions and fault tolerance at a coarser granu-
larity, say every few seconds. Based on this insight, we propose Drizzle, a framework for executing
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Figure 4.1: Breakdown of average time taken for task execution when running a two-stage treeReduce
job using Spark. The time spent in scheduler delay and task transfer (which includes task serialization,
deserialization, and network transfer) grows as we increase cluster size.

low latency iterative jobs that decouples the execution and scheduling decision granularity.
We next present the motivation for Drizzle and following that outline the design, implementa-

tion and evaluation of Drizzle on machine learning and stream processing workloads.

4.1 Case for low-latency scheduling
As an example, we consider the DAG of stages used to implement Stochastic Gradient Descent

(SGD) in MLlib [124]. The job consists of a number of iterations, where each iteration first uses a
map stage to compute gradients, and then uses a treeReduce operation to aggregate the gradi-
ents. Figure 2.4 illustrates the centralized driver’s role in the execution of this job. First, the driver
schedules the four tasks in the first stage of the job. To schedule a task, the driver selects a worker
with available resources and sends the task to the worker. The task includes a description of the
input data and a closure describing the computation the task will perform on that input data. Each
of those tasks produce intermediate data to be read by tasks in the next stage, so when the tasks
complete, they notify the driver and communicate metadata about the intermediate data generated.
When all four tasks have completed, the driver schedules the two tasks in the next stage. The driver
passes each of the two tasks information about the data generated by the previous stage, so that the
tasks know where to read input data from. This process continues as the two-task stage finishes
and the final one-task stage is launched and completes. At the end of an iteration the driver updates
the model for the next iteration and broadcasts this value to all the workers along with the tasks of
the next iteration.

Launching tasks and managing metadata are in the critical path of the job’s execution, and
have overheads that grow with increasing parallelism. To measure this overhead, we ran a micro-
benchmark that uses a two stage treeReduce job modeled after one of the iterations in Fig-
ure 2.4. Each task does a very small amount of computation, to allow us to isolate the scheduler
overhead. Tasks in the first stage
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We use a cluster of r3.xlarge Amazon EC2 instances, where each machine has 4 cores, and
the workload for m machines uses 4×m tasks in the first stage (i.e., the number of tasks is equal
to the number of cores) and 16 tasks in the second stage. We plot the average time taken by each
task for scheduling, task transfer (including serialization, deserialization, and network transfer of
the task), computation1 and data transfer. Our results in Figure 4.1 show that while the scheduling
and task transfer overheads are less than 30ms at 16 machines, as we increase the cluster size the
overheads grow to around 150ms (over 70% of the runtime), which is impractical for low latency
workloads.

4.2 Drizzle Design
Next we detail the design of Drizzle. Drizzle builds on existing BSP-based execution model,

and we show how the BSP model can be changed to dramatically reduce average scheduling and
communication overheads. Reducing these overheads allows us to reduce the size of a iteration and
allows us to achieve sub-second latency (of≈100 ms) per iteration. In designing Drizzle, we chose
to extend the BSP model since it allows us to inherit existing optimizations for high-throughput
batch processing. We believe one could go in the other direction, that is start with a continuous
processing system like Flink and modify it to add batching and get similar benefits.

Our high level approach to removing the overheads in the BSP-based model is to decouple
the size of the iteration being processed from the interval at which coordination takes place. This
decoupling will allow us to reduce the size of a iteration to achieve sub-second processing latency,
while ensuring that coordination, which helps the system adapt to failures and cluster membership
changes, takes place every few seconds. We focus on the two sources of coordination that exists in
BSP systems. First we look at the centralized coordination that exists between iterations and how
we can remove this with group scheduling. Following that, we discuss how we can remove the
barrier within a iteration using pre-scheduling.

4.2.1 Group Scheduling
BSP frameworks like Spark, FlumeJava [39] or Scope [37] use centralized schedulers that

implement many complex scheduling techniques; these include: algorithms to account for local-
ity [183], straggler mitigation [11], fair sharing [93] etc. Scheduling a single stage in these systems
proceeds as follows: first, a centralized scheduler computes which worker each task should be as-
signed to, taking in the account locality and other constraints. Following this tasks are serialized
and sent to workers using an RPC. The complexity of the scheduling algorithms used coupled
with computational and network limitations of the single machine running the scheduler imposes
a fundamental limit on how fast tasks can be scheduled.

1The computation time for each task increases with the number of machines even though the first stage computation
remains the same. This is because tasks in second stage have to process more data as we increase the number of
machines.
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Figure 4.2: Group scheduling amortizes the scheduling overheads across multiple iterations of a streaming
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next with 2 tasks. The driver launches all stages at the beginning (with information about where output data
should be sent to) so that executors can exchange data without contacting the driver.

The limitation a single centralized scheduler has been identified before in efforts like Spar-
row [136] and Apollo [30]. However, these systems restrict themselves to cases where scheduled
tasks are independent of each other, e.g., Sparrow forwards each scheduling request to one of many
distributed schedulers which do not coordinate among themselves and hence cannot account for
dependencies between requests. In Drizzle, we focus on iterative jobs where there are dependen-
cies between batches and thus coordination is required when scheduling parts of a single job. To
alleviate centralized scheduling overheads, we study the execution DAG of iterative jobs.

We observe that in iterative jobs, the computation DAG used to process iterations is largely
static, and changes infrequently. Based on this observation, we propose reusing scheduling deci-
sions across iterations. Reusing scheduling decisions means that we can schedule tasks for multiple
iterations (or a group) at once (Figure 4.2) and thus amortize the centralized scheduling overheads.
To see how this can help, consider a job used to compute moving averages. Assuming the data
sources remain the same, the locality preferences computed for every iteration will be same. If the
cluster configuration also remains static, the same worker to task mapping will be computed for
every iteration. Thus we can run scheduling algorithms once and reuse its decisions. Similarly, we
can reduce network overhead of RPCs by combining tasks from multiple iterations into a single
message.

When using group scheduling, one needs to be careful in choosing how many iterations are
scheduled at a time. We discuss how the group size affects the performance and adaptivity proper-
ties in §4.2.3 and present techniques for automatically choosing this size in §4.2.4.
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4.2.2 Pre-Scheduling Shuffles
While the previous section described how we can eliminate the barrier or coordination between

iterations, as described in Section 3.1 (Figure 2.4), existing BSP systems also impose a barrier
within a iteration to coordinate data transfer for shuffle operations. We next discuss how we can
eliminate these barriers as well and thus eliminate all coordination within a group.

In a shuffle operation we have a set of upstream tasks (or map tasks) that produce output
and a set of downstream tasks (or reduce tasks) that receive the outputs and run the reduction
function. In existing BSP systems like Spark or Hadoop, upstream tasks typically write their
output to local disk and notify the centralized driver of the allocation of output records to the
different reducers. The driver then applies task placement techniques [49] to minimize network
overheads and creates downstream tasks that pull data from the upstream tasks. Thus in this case
the metadata is communicated through the centralized driver and then following a barrier, the data
transfer happens using a pull based mechanism.

To remove this barrier, we pre-schedule downstream tasks before the upstream tasks (Fig-
ure 4.3) in Drizzle. We perform scheduling so downstream tasks are launched first; this way up-
stream tasks are scheduled with metadata that tells them which machines running the downstream
tasks need to be notified on completion. Thus, data is directly transferred between workers with-
out any centralized coordination. This approach has two benefits. First, it scales better with the
number of workers as it avoids centralized metadata management. Second, it removes the barrier,
where succeeding stages are launched only when all the tasks in the preceding stage complete.

We implement pre-scheduling by adding a local scheduler on each worker machine that man-
ages pre-scheduled tasks. When pre-scheduled tasks are first launched, these tasks are marked as
inactive and do not use any resources. The local scheduler on the worker machine tracks the data
dependencies that need to be satisfied. When an upstream task finishes, it materializes the output
on local disk, notifies the corresponding downstream workers and asynchronously notifies the cen-
tralized scheduler. The local scheduler at the downstream task then updates the list of outstanding
dependencies. When all the data dependencies for an inactive task have been met, the local sched-
uler makes the task active and runs it. When the task is run, it fetches the files materialized by the
upstream tasks and continues processing. Thus we implement a push-metadata, pull-based data
approach that minimizes the time to trigger tasks while allowing the downstream tasks to control
when the data is transferred.

4.2.3 Adaptivity in Drizzle
Group scheduling and shuffle pre-scheduling eliminate barriers both within and across itera-

tions and ensure that barriers occur only once every group. However in doing so, we incur over-
heads when adapting to changes and we discuss how this affects fault tolerance, elasticity and
workload changes below. This overhead largely does not affect record processing latency, which
continues to happen within a group.

Fault tolerance. Similar to existing BSP systems we create synchronous checkpoints at regular
intervals in Drizzle. The checkpoints can be taken at the end of any iteration and the end of a group
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of iterations presents one natural boundary. We use heartbeats from the workers to the centralized
scheduler to detect machine failures. Upon noticing a failure, the scheduler resubmits tasks that
were running on the failed machines. By default these recovery tasks begin execution from the
latest checkpoint available. As the computation for each iteration is deterministic we further speed
up the recovery process with two techniques. First, recovery tasks are executed in parallel [187]
across many machines. Second, we also reuse any intermediate data that was created by map stages
run in earlier iterations. This is implemented with lineage tracking, a feature that is already present
in existing BSP systems.

Using pre-scheduling means that there are some additional cases we need to handle during
fault recovery in Drizzle. For reduce tasks that are run on a new machine, the centralized scheduler
pre-populates the list of data dependencies that have been completed before. This list is maintained
based on the asynchronous updates from upstream tasks. Similarly the scheduler also updates the
active upstream (map) tasks to send outputs for succeeding iterations to the new machines. In both
cases, if the tasks encounter a failure in either sending or fetching outputs they forward the failure
to the centralized scheduler. Thus we find having a centralized scheduler simplifies design and
helps ensure that there is a single source that workers can rely on to make progress.

Elasticity. In addition to handling nodes being removed, we can also handle nodes being added
to improve performance. To do this we integrate with existing cluster managers such as YARN [17]
and Mesos [88] and the application layer can choose policies [54] on when to request or relinquish
resources. At the end of a group boundary, Drizzle updates the list of available resources and
adjusts the tasks to be scheduled for the next group. Thus in this case, using a larger group size
could lead to larger delays in responding to cluster changes.

4.2.4 Automatically selecting group size
Intuitively, the group size controls the performance to co-ordination trade-off in Drizzle. The

total runtime of the job can be split between time spent in coordination and time spent in data-
processing. In the absence of failures, the job’s running time is minimized by avoiding coordina-
tion, while more frequent coordination enables better adaptability. These two objectives are thus
at odds with each other. In Drizzle, we explore the trade-off between these objectives by bounding
coordination overheads while maximizing adaptability. Thus, we aim to choose a group size that
is the smallest possible while having a fixed bound on coordination overheads.

We implement an adaptive group-size tuning algorithm that is inspired by TCP congestion
control [31]. During the execution of a group we use counters to track the amount of time spent
in various parts of the system. Using these counters we are then able to determine what fraction
of the end-to-end execution time was spent in scheduling and other coordination vs. time spent on
the workers executing tasks. The ratio of time spent in scheduling to the overall execution gives
us the scheduling overhead and we aim to maintain this overhead within user specified lower and
upper bounds.

When the overhead goes above the upper bound, we multiplicatively increase the group size
to ensure that the overhead decreases rapidly. Once the overhead goes below the lower bound, we
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additively decrease the group size to improve adaptivity. This is analogous to applying AIMD pol-
icy to determine the coordination frequency for a job. AIMD is widely used in TCP, and has been
shown to provably converge in general [94]. We use exponentially averaged scheduling overhead
measurements when tuning group size. This ensures that we are stable despite transient latency
spikes from garbage collection and other similar events.

The adaptive group-size tuning algorithms presents a simple approach that handles the most
common scenarios we find in large scale deployments. However the scheme requires users to
provide upper and lower bounds for the coordination overhead and these bounds could be hard
to determine in a new execution environment. In the future we plan to study techniques that can
measure various aspects of the environment to automatically determine the scheduling efficiency.

4.2.5 Conflict-Free Shared Variables
An additional challenge for machine learning workloads is how to track and disseminate up-

dates to a shared model with minimal coordination. We next describe conflict-free shared variables,
an extension that enables light-weight data sharing in Drizzle.

Most machine learning algorithms perform commutative updates to model variables [113], and
sharing model updates across workers is equivalent to implementing a AllReduce [189]. To en-
able commutative updates within a group of iterations we introduce conflict-free shared variables.

Conflict-free shared variables are similar in spirit to CRDTs [148] and provide an API to access
and commutatively update shared data. We develop an API that can be used with various underly-
ing implementations. Our API consists of two main functions: (1) A get function that optionally
blocks to synchronize updates. This is typically called at the beginning of a task. In synchronous
mode, it waits for all updates from the previous iterations. (2) A commit function that specifies
that a task has finished all the updates to the shared variable. Additionally we provide callbacks to
the shared variable implementation when a group begins and ends. This is to enable each imple-
mentation to checkpoint their state at group boundaries and thus conflict-free shared variables are
a part of the unified fault tolerance strategy in Drizzle.

In our current implementation we focus on models that can fit on a single machine (these could
still be many millions of parameters given a standard server has ≈ 200GB memory) and build
support for replicated shared variables with synchronous updates. We implement a merge strategy
that aggregates all the updates on a machine before exchanging updates with other replicas. While
other parameter servers [56,114] implement more powerful consistency semantics, our main focus
here is to study how the control plane overheads impact performance. We plan to integrate Drizzle
with existing state-of-the-art parameter servers [113, 176] in the future.

4.2.6 Data-plane Optimizations for SQL
The previous sections describe the design of the control-plane used in Drizzle, next we describe

some of data plane optimizations enabled by Drizzle. We specifically focus on stream processing
workloads implemented in systems like Spark streaming and study the importance of batching for
the data plane. We start by analyzing the query workload for a popular cloud hosted data analytics
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Aggregate Percentage of Queries
Count 60.55

First/Last 25.9
Sum/Min/Max 8.640

User Defined Function 0.002
Other 4.908

Table 4.1: Breakdown of aggregations used in a workload containing over 900,000 SQL and streaming
queries.

provider. We use this analysis to motivate the need for efficient support for aggregations and de-
scribe how batching can provide better throughput and latency for such workloads.

Workload analysis. We analyze over 900,000 SQL queries and streaming queries executed on a
popular cloud-based data analytics platform. These queries were executed by different users on a
variety of data sets. We parsed these queries to determine the set of frequently used operators: we
found that around 25% of queries used one or more aggregation functions. While our dataset did
not explicitly distinguish between streaming and ad-hoc SQL queries, we believe that streaming
queries which update dashboards naturally require aggregations across time. This platform sup-
ports two kinds of aggregation functions: aggregations that can use partial merge operations (e.g.,
sum) where the merge operation can be distributed across workers and complete aggregations (e.g.,
median) which require data to be collected and processed on a single machine. We found that
over 95% of aggregation queries only made use of aggregates supporting partial merges. A com-
plete breakdown is shown in Table 4.1. In summary, our analysis shows that supporting efficient
computation of partial aggregates like count, sum is important for achieving good performance.

Optimization within a batch. In order to support aggregates efficiently, batching the computation
of aggregates can provide significant performance benefits. These benefits come from two sources:
using vectorized operations on CPUs [27] and by minimizing network traffic from partial merge
operations [20]. For example to compute a count of how many ad-clicks were generated for each
publisher, we can aggregate the counts per publisher on each machine during a map and combine
them during the reduce phase. We incorporate optimizations within a batch in Drizzle and mea-
sure the benefits from this in Section §4.4.5.

Optimization across batches and queries. Using Drizzle’s architecture also enables optimiza-
tions across iterations. This is typically useful in case the query plan needs to be changed due to
changes in the data distribution. To enable such optimizations, during every iteration, a number
of metrics about the execution are collected. These metrics are aggregated at the end of a group
and passed on to a query optimizer [20,128] to determine if an alternate query plan would perform
better. Finally, a BSP based architecture also enables reuse of intermediate results across stream-
ing queries. This could be useful in scenarios where a number of streaming queries are run on the
same dataset and we plan to investigate the benefits from this in the future.
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4.2.7 Drizzle Discussion
We discuss other design approaches to group scheduling and extensions to pre-scheduling that

can further improve performance.

Other design approaches. An alternative design approach we considered was to treat the existing
scheduler in BSP systems as a black-box and pipeline scheduling of one iteration with task exe-
cution of the previous iteration. That is, while the first iteration executes, the centralized driver
schedules one or more of the succeeding iterations. With pipelined scheduling, if the execution
time for a iteration is texec and scheduling overhead is tsched, then the overall running time for b
iterations is b×max(texec, tsched). The baseline would take b× (texec+ tsched). We found that this
approach is insufficient for larger cluster sizes, where the value of tsched can be greater than texec.

Another design approach we considered was to model task scheduling as leases [76] that could
revoked if the centralized scheduler wished to make any changes to the execution plan. By ad-
justing the lease duration we can similarly control the coordination overheads. However using this
approach would require reimplementing the execution model used by BSP-style systems and we
found that group scheduling offered similar behavior while providing easier integration with exist-
ing systems.

Improving Pre-Scheduling. While using pre-scheduling in Drizzle, the reduce tasks usually need
to wait for a notification from all upstream map tasks before starting execution. We can reduce
the number of inputs a task waits for if we have sufficient semantic information to determine the
communication structure for a stage. For example, if we are aggregating information using binary
tree reduction, each reduce task only requires the output from two map tasks run in the previous
stage. In general inferring the communication structure of the DAG that is going to be generated is
a hard problem because of user-defined map and hash partitioning functions. For some high-level
operators like treeReduce or broadcast the DAG structure is predictable. We have imple-
mented support for using the DAG structure for treeReduce in Drizzle and plan to investigate
other operations in the future.

Quality of Scheduling. Using group and pre-scheduling requires some minor modifications to
the scheduling algorithm used by the underlying systems. The main effect this introduces for
scheduling quality is that the scheduler’s decision algorithm is only executed once for each group of
tasks. This coarser scheduling granularity can impact algorithms like fair sharing, but this impact
is bounded by the size of a group, which in our experience is limited to a few seconds at most.
Further, while using pre-scheduling the scheduler is unaware of the size of the data produced from
the upstream tasks and thus techniques to optimize data transfer [49] cannot be applied. Similarly
database-style optimizations that perform dynamic rebalancing [103] of tasks usually depend on
data statistics and cannot be used within a group. However for streaming and machine learning
applications we see that the data characteristics change over the course of seconds to minutes and
thus we can still apply these techniques using previously collected data.
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4.3 Drizzle Implementation
We have implemented Drizzle by extending Apache Spark 2.0.0. Our implementation required

around 4000 lines of Scala code changes to the Spark scheduler and execution engine. We next
describe some of the additional performance improvements we made in our implementation and
also describe how we integrated Drizzle with Spark Streaming and MLlib.

Spark Improvements. The existing Spark scheduler implementation uses two threads: one to
compute the stage dependencies and locality preferences, and the other to manage task queuing,
serializing, and launching tasks on executors. We observed that when several stages pre-scheduled
together, task serialization and launch is often a bottleneck. In our implementation we separated
serializing and launching tasks to a dedicated thread and optionally use multiple threads if there are
many stages that can be scheduled in parallel. We also optimized locality lookup for pre-scheduled
tasks and these optimizations help reduce the overheads when scheduling many stages in advance.
However there are other sources of performance improvements we have not yet implemented in
Drizzle. For example, while iterative jobs often share the same closure across iterations we do not
amortize the closure serialization across iterations. This requires analysis of the Scala byte code
that is part of the closure and we plan to explore this in the future.

MLlib. To integrate machine learning algorithms with Drizzle we introduce a new iteration prim-
itive (similar to iterate in Flink), which allows developers to specify the code that needs to
be run on every iteration. We change the model variables to be stored using conflict-free shared
variables (instead of broadcast variables) and similarly change the gradient computation functions.
We use sparse and dense vector implementations of conflict-free shared variables that are a part
of Drizzle to implement gradient-descent based optimization algorithms. We plan to support other
algorithms like dual coordinate ascent [147] in the future. Higher level algorithms like Logistic
Regression, SVM require no change as they can directly use the modified optimization algorithms.

Spark Streaming. The Spark Streaming architecture consists of a JobGenerator that creates a
Spark RDD and a closure that operates on the RDD when processing a micro-batch. Every micro-
batch in Spark Streaming is associated with an execution timestamp and therefore each generated
RDD has an associated timestamp. In Drizzle, we extend the JobGenerator to submit a number
of RDDs at the same time, where each generated RDD has its appropriate timestamp. For example,
when Drizzle is configured to use group size of 3, and the starting timestamp is t, we would
generate RDDs with timestamps t, t+1 and t+2. One of the challenges in this case lies in how to
handle input sources like Kafka [106], HDFS etc. In the existing Spark architecture, the metadata
management of which keys or files to process in a micro-batch is done by the centralized driver.
To handle this without centralized coordination, we modified the input sources to compute the
metadata on the workers as a part of the tasks that read input. Finally, we note these changes are
restricted to the Spark Streaming implementation and user applications do not need modification
to work with Drizzle.
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Figure 4.4: Micro-benchmarks for performance improvements from group scheduling and pre-scheduling.

4.4 Drizzle Evaluation
We next evaluate the performance of Drizzle. First, we use a series of microbenchmarks to

measure the scheduling performance of Drizzle and breakdown the time taken at each step in
the scheduler. Next we measure the impact of using Drizzle with two real world applications:
a logistic regression task on a standard machine learning benchmark and an industrial streaming
benchmark [179]. Finally, we evaluate the adaptability of Drizzle using a number of different
scenarios including fault tolerance, elasticity and evaluate our auto-tuning algorithm. We compare
Drizzle to Apache Spark, a BSP style-system and Apache Flink, a record-at-time stream processing
system.

4.4.1 Setup
We ran our experiments on 128 r3.xlarge instances in Amazon EC2. Each machine has

4 cores, 30.5 GB of memory and 80 GB of SSD storage. We configured Drizzle to use 4 slots
for executing tasks on each machine. For all our experiments we warm up the JVM before taking
measurements. We use Apache Spark v2.0.0 and Apache Flink v1.1.1 as baselines for our experi-
ments. All the three systems we compare are implemented on the JVM and we use the same JVM
heap size and garbage collection flags for all of them.

4.4.2 Micro benchmarks
In this section we present micro-benchmarks that evaluate the benefits of group scheduling and

pre-scheduling. We run ten trials for each of our micro-benchmarks and report the median, 5th and
95th percentiles.
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Group Scheduling

We first evaluate the benefits of group scheduling in Drizzle, and its impact in reducing schedul-
ing overheads with growing cluster size. We use a weak scaling experiment where the amount of
computation per task is fixed (we study strong scaling in §4.4.3) but the size of the cluster (and
hence number of tasks) grow. For this experiment, we set the number of tasks to be equal to the
number of cores in the cluster. In an ideal system the computation time should remain constant.
We use a simple workload where each task computes the sum of random numbers and the com-
putation time for each iteration is less than 1ms. Note that there are no shuffle operations in this
benchmark. We measure the average time taken per iteration while running 100 iterations and we
scale the cluster size from 4–128 machines.

As discussed in §3.1, we see that (Figure 4.4(a)) task scheduling overheads grow for Spark
as the cluster size increases and is around 200ms when using 128 machines. Drizzle is able to
amortize these overheads leading to a 7 − 46× speedup across cluster sizes. With a group size
of 100 and 128 machines, Drizzle has scheduler overhead of less than 5ms compared to around
195ms for Spark.

We breakdown where the benefits come from in Figure 4.4(b). To do this we plot the average
time taken by each task for scheduling, task transfer (including serialization, deserialization, and
network transfer of the task) and computation. We can see that scheduling and task transfer domi-
nate the computation time for this benchmark with Spark and that Drizzle is able to amortize both
of these using group scheduling.

Pre-Scheduling Shuffles

To measure benefits from pre-scheduling we use the same setup as in the previous subsection
but add a shuffle stage to every iteration with 16 reduce tasks. We compare the time taken per
iteration while running 100 iterations in Figure 4.4(c). Drizzle achieves between 2.7x to 5.5x
speedup over Spark as we vary cluster size.

Figure 4.4(c) also shows the benefits of just using pre-scheduling (i.e., group size = 1). In
this case, we still have barriers between the iterations and only eliminate barriers within a single
iteration. We see that the benefits from just pre-scheduling are limited to only 20ms when using
128 machines. However for group scheduling to be effective we need to pre-schedule all of the
tasks in the DAG and thus pre-scheduling is essential.

Finally, we see that the time per iteration of the two-stage job (45ms for 128 machines) is
significantly higher than the time per iteration of the one-stage job in the previous section (5 ms).
While part of this overhead is from messages used to trigger the reduce tasks, we also observe
that the time to fetch and process the shuffle data in the reduce task grows as the number of map
tasks increase. To reduce this overhead, we plan to investigate techniques that reduce connection
initialization time and improve data serialization/deserialization [123].
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Conflict-free Shared Variables

To evaluate the performance of conflict-free shared variables we run an iterative workload
where we perform an AllReduce operation in each iteration. The aggregate value is used to start
the next iteration. For our baseline, we implement the same operation in Spark using a reduction
to the driver followed by a broadcast to all the workers. We measure the performance trends as we
vary the (a) size of the shared variable (b) number of machines used and (c) the group size.

For a smaller vector size of 32k (Figure 4.5(a)) we see that using conflict-free shared variables
alone (i.e.,group size = 1) does not yield much performance improvements. However in this case
where the data plane operations are very cheap we find that using group scheduling can improve
performance by 5x across various cluster sizes.

For larger vector size of 1MB we see that the data plane becomes the bottleneck especially
for larger clusters. In this case conflict-free shared variables give up to 4x improvement and most
of this improvement comes from eagerly aggregating updates on a single machine before sending
them to other machines. Finally, we also note that group scheduling becomes less important when
the data plane overheads are high and we also study this in Section 4.4.3 with a real-world machine
learning benchmark.
Varying vector size. Varying the size of the dense vector changes the amount of data that is
transferred during the AllReduce operation. For small updates of 32 bytes or 1KB we see
that Drizzle is around 6x faster than the baseline. This comes from both avoiding scheduling
overheads for each iteration and by efficient aggregation of commutative updates. As we increase
the vector size we see that the scheduling overheads become smaller and the network bandwidth
of the centralized aggregator in Drizzle becomes the bottleneck. We still see around 4x win over
the baseline as Drizzle aggregates updates from all the tasks on the machine (our machines have 4
cores) while Spark sends each task result separately.
Varying batch size. Finally we fix the cluster size (128 machines), vector size (1KB) and measure
the importance of the batch size. Similar to §4.4.2 we see that using a batch size of 25 or greater is
sufficient to amortize the scheduling delay in this case.

4.4.3 Machine Learning workloads
Next, we look at Drizzle’s benefits for machine learning workloads. We evaluate this with

logistic regression implemented using stochastic gradient descent (SGD). We use the Reuters Cor-
pus Volume 1 (RCV1) [112] dataset, which contains cosine-normalized TF-IDF vectors from text
documents. We use SGD to train two models from this data: the first is stored as a dense vector,
while for the second we use L1-regularization [161] with thresholding [114] to get a sparse model.
We show the time taken per iteration for Drizzle when compared to Spark in Figure 4.5.

From the figure we see that while using dense updates, both Drizzle and Spark hit a scaling
limit at around 32 machines. This is because beyond 32 machines the time spent in communicating
model updates dominates the time spent computing gradients. However using sparse updates we
find that Drizzle can scale better and the time per-iteration drops to around 80ms at 128 machines
(compared to 500ms with Spark). To understand how sparse updates help, we plot the size of data
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Figure 4.5: Time taken per iteration of Stochastic Gradient Descent (SGD) run on the RCV1 dataset. We
see that using sparse updates, Drizzle can scale better as the cluster size increases.

transferred per-iteration in Figure 4.5(e). In addition to transmitting less data, we find that as the
model gets closer to convergence fewer features get updated, further reducing the communication
overhead. While using sparse updates with Spark, though the model updates are small, the task
scheduling overheads dominate the time taken per iteration and thus using more than 32 machines
makes the job run slower.

Finally, given the computation and communication trade-offs above, we note that using a large
cluster is not efficient for this dataset [123]. In fact, RCV1 can be solved on a single machine
using tools like LibLinear [64]. However, using a smaller dataset stresses the scheduling layers of
Drizzle and highlights where the scaling bottlenecks are. Further, for problems [113] that do not
fit on a single machine, algorithms typically sample the data in each iteration and our example is
similar to using a sample size of 677k for such problems.
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Figure 4.6: Latency and throughput comparison of Drizzle with Spark and Flink on the Yahoo Streaming
benchmark.
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Figure 4.7: Effect of micro-batch optimization in Drizzle in terms of latency and throughput.

4.4.4 Streaming workloads
Next, we demonstrate Drizzle’s benefits for streaming applications. Each micro-batch in the

streaming application is represented as a single iteration of computation to Drizzle. We use the
Yahoo! streaming benchmark [179] which mimics running analytics on a stream of ad-impressions.
A producer inserts JSON records into a stream. The benchmark then groups events into 10-second
windows per ad-campaign and measures how long it takes for all events in the window to be
processed after the window has ended. For example if a window ended at time a and the last event
from the window was processed at time b, the processing latency for this window is said to be b−a.

When implemented using the micro-batch model in Spark and Drizzle, this workload consists
of two stages per micro-batch: a map-stage that reads the input JSONs and buckets events into a
window and a reduce stage that aggregates events in the same window. For the Flink implementa-
tion we use the optimized version [55] which creates windows in Flink using the event timestamp
that is present in the JSON. Similar to the micro-batch model we have two operators here, a map



4.4. DRIZZLE EVALUATION 50

1

10

100

1000

10000

100000

150 200 250 300 350

La
te

nc
y 

(m
s)

Time (seconds)

Drizzle
Spark
Flink

(a) Event Latency for the Yahoo Streaming Bench-
mark when handling failures. At 240 seconds, we kill
one machine in the cluster. Drizzle has lower latency
during recovery and recovers faster.

G
roupSize

O
verhead

0 50 100 150 200

0
20
40
60

0
25
50
75

Time

MicroBatch 100ms 250ms

(b) Behavior of group size auto tuning with the Yahoo
Streaming benchmark when using two different micro-
batch sizes. The optimal group size is lower for the
larger micro-batch.

Figure 4.8: Behavior of Drizzle across streaming benchmarks and how the group size auto-tuning behaves
for the Yahoo streaming benchmark.

operator that parses events and a window operator that collects events from the same window and
triggers an update every 10 seconds.

For our evaluation, we created an input stream that inserts JSON events and measure the event
processing latency. We use the first five minutes to warm up the system and report results from
the next five minutes of execution. We tuned each system to minimize latency while meeting
throughput requirements. In Spark this required tuning the micro-batch size, while in Flink we
tuned the buffer flush duration.

Latency. The CDF of processing latencies for 20M events/second on 128 machines is shown
in Figure 4.6(a). We see Drizzle is able to achieve a median latency of around 350ms and matches
the latency achieved by Flink, a continuous operator streaming system. We also verified that the
latency we get from Flink match previously reported numbers [55, 179] on the same benchmark.
We also see that by reducing scheduling overheads, Drizzle gets around 3.6x lower median latency
than Spark.

Throughput. We next compare the maximum throughput that can be achieved given a latency
target. We use the Yahoo Streaming benchmark for this and for Spark and Drizzle we set the
latency target by adjusting the micro-batch size and measure the maximum throughput that can be
sustained in a stable fashion. For continuous operator systems like Flink there is no direct way to
configure a latency target. Thus, we measure the latency achieved as we increase the throughput
and report the maximum throughput achieved within our latency bound. The results from this
experiment are shown in Figure 4.6(b). From the figure we can see that while Spark crashes at
very low latency target of 250ms, Drizzle and Flink both get around 20M events/s. At higher
latency targets we find that Drizzle gets 1.5-3x more throughput than Spark and that this number
reduces as the latency target grows. This is because the overheads from scheduling become less
important at higher latency targets and thus the benefits from Drizzle become less relevant.

Fault Tolerance. We use the same Yahoo streaming benchmark as above and benchmark the
fault tolerance properties of all three systems. In this experiment we kill one machine in the cluster
after 240 seconds and measure the event processing latency as before. Figure 4.8(a) shows the
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Figure 4.9: Effect of varying group size in Drizzle.

latency measured for each window across time. We plot the mean and standard deviation from
five runs for each system. We see that using the micro-batch model in Spark has good relative
adaptivity where the latency during failure is around 3x normal processing latency and that only 1
window is affected. Drizzle has similar behavior where the latency during failure increases from
around 350ms to around 1s. Similar to Spark, Drizzle’s latency also returns to normal after one
window.

On the other hand Flink experiences severe slowdown during failure and the latency spikes
to around 18s. Most of this slow down is due to the additional coordination required to stop and
restart all the operators in the topology and to restore execution from the latest checkpoint. We
also see that having such a huge delay means that the system is unable to catch up with the input
stream and that it takes around 40s (or 4 windows) before latency returns to normal range.

4.4.5 Micro-batch Optimizations
As discussed in §4.2.6, one of the advantages of using the micro-batch model for streaming

is that it enables additional optimizations to be used within a batch. In the case of the Yahoo
streaming benchmark, as the output only requires the number of events in a window we can reduce
the amount of data shuffled by aggregating counters for each window on the map side. We im-
plemented this optimization in Drizzle and Spark by using the reduceBy operator instead of the
groupBy operator and study the latency, throughput improvements bought about by this change.

Latency. Figure 4.7(a) shows the CDF of the processing latency when the optimization is
enabled. Since Flink creates windows after the keys are partitioned, we could not directly apply
the same optimization. In this case we see that using optimization leads to Drizzle getting around
94ms median latency and is 2x faster than Spark and 3x faster than Flink.

Throughput. Similarly we again measure the maximum throughput that can be achieved given
a latency target in Figure 4.7(b). We see that using optimization within a batch can lead to sig-
nificant wins in throughput as well. Drizzle is able to sustain around 35M events/second with a
100ms latency target, a target that both Spark and Flink are unable to meet for different reasons:
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Spark due to scheduling overheads and Flink due to lack of batch optimizations. Similar to the
previous comparison we see that the benefits from Drizzle become less pronounced at larger la-
tency targets and that given a 1s target both Spark and Drizzle achieve similar throughput of 100M
events/second. We use the optimized version for Drizzle and Spark in the following sections of the
evaluation.

In summary, we find that by combining the batch-oriented data processing with the coarse
grained scheduling in Drizzle we are able to achieve better performance than existing BSP systems
like Spark and continuous operator systems like Flink. We also see that Drizzle also recovers faster
from failures when compared to Flink and maintains low latency during recovery.

4.4.6 Adaptivity in Drizzle
We next evaluate the importance of group size in Drizzle and specifically how it affects ada-

pativity in terms of fault tolerance and elasticity. Following that we show how our auto-tuning
algorithm can find the optimal group size.

Fault tolerance with Group Scheduling

To measure the importance of group size for fault recovery in Drizzle, we use the same Yahoo
workload as the previous section and we vary the group size. In this experiment we create check-
points at the end of every group. We measure processing latency across windows and the median
processing latency from five runs is shown in Figure 4.9(a).

We can see that using a larger group size can lead to higher latencies and longer recovery
times. This is primarily because of two reasons. First, since we only create checkpoints at the
end of every group having a larger group size means that more records would need to be replayed.
Further, when machines fail pre-scheduled tasks need to be updated in order to reflect the new task
locations and this process takes longer when there are larger number of tasks. In the future we plan
to investigate if checkpoint intervals can be decoupled from group and better treatment of failures
in pre-scheduling.

Handling Elasticity

To measure how Drizzle enables elasticity we consider a scenario where we start with the
Yahoo Streaming benchmark but only use 64 machines in the cluster. We add 64 machines to
the cluster after 4 minutes and measure how long it takes for the system to react and use the new
machines. To measure elasticity we monitor the average latency to execute a micro-batch and
results from varying the group size are shown in Figure 4.9(b).

We see that using a larger group size can delay the time taken to adapt to cluster changes. In
this case, using a group size of 50 the latency drops from 150ms to 100ms within 10 seconds. On
the other hand, using group size of 600 takes 100 seconds to react. Finally, as seen in the figure,
elasticity can also lead to some performance degradation when the new machines are first used.
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This is because some of the input data needs to be moved from machines that were being used to
the new machines.

Group Size Tuning

To evaluate our group size tuning algorithm, we use the same Yahoo streaming benchmark but
change the micro-batch size. Intuitively the scheduling overheads are inversely proportional to the
micro-batch size, as small iterations imply there are more tasks to schedule. We run the experiment
with the scheduling overhead target of 5% to 10% and start with a group size of 2. The progress of
the tuning algorithm is shown in Figure 4.8(b) for micro-batch size of 100ms and 250ms.

We see that for a smaller micro-batch the overheads are high initially with the small group size
and hence the algorithm increases the group size to 64. Following that as the overhead goes below
5% the group size is additively decreased to 49. In the case of the 250ms micro-batch we see that
a group size of 8 is good enough to maintain a low scheduling overhead.

4.5 Drizzle Conclusion
In conclusion, this chapter shows that it is possible to achieve low latency execution for iter-

ative workloads while using a BSP-style framework. Using the insight that we can decouple fine
grained execution from coarse grained centralized scheduling, we build Drizzle, a framework for
low latency iterative workloads. Drizzle reduces overheads by grouping multiple iterations and
uses pre-scheduling and conflict-free shared variables to enable communication across iterations.
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Chapter 5

Data-aware scheduling

Having looked at how we can optimize the control plane for machine learning workloads, we
now turn our attention to the data plane. The efficient execution of I/O-intensive tasks is predicated
on data-aware scheduling, i.e., minimizing the time taken by tasks to read their data. Widely
deployed techniques for data-aware scheduling execute tasks on the same machine as their data
(if the data is on one machine, as for input tasks) [10, 183] and avoid congested network links
(when data is spread across machines, as for intermediate tasks) [11, 49]. However, despite these
techniques, we see that production jobs in Facebook’s Hadoop cluster are slower by 87% compared
to perfect data-aware scheduling (§5.1.3). This is because, in multi-tenant clusters, compute slots
that are ideal for data-aware task execution are often unavailable.

The importance of data-aware scheduling is increasing with rapid growth in data volumes [68].
To cope with this data growth and yet provide timely results, there is a trend of jobs using only a
subset of their data. Examples include sampling-based approximate query processing systems [7,
15] and machine learning algorithms [28,110]. A key property of such jobs is that they can compute
on any of the combinatorially many subsets of the input dataset without compromising application
correctness. For example, say a machine learning algorithm like stochastic gradient descent [28]
needs to compute on a 5% uniform random sample of data. If the data is spread over 100 blocks
then the scheduler can choose any 5 blocks and has

(
100
5

)
input choices for this job.

Our goal is to leverage the combinatorial choice of inputs for data-aware scheduling. Current
schedulers require the application to select a subset of the data on which the scheduler runs the
job. This prevents the scheduler from taking advantage of available choices. In contrast, we argue
for “late binding” i.e., choosing the subset of data dynamically depending on the current state of
the cluster (see Figure 5.1). This dramatically increases the number of data local slots for input
tasks (e.g., map tasks), which increases the probability of achieving data locality even during high
cluster utilizations.

In this chapter we describe the design and implementation of KMN, a scheduler that can lever-
age the choices available in sampling based workloads. We also describe how we can extend ben-
efits of choice to intermediate stages and also explain how we can handle stragglers in upstream
tasks using a delay-based approach.
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5.1 Choices and Data-Awareness
In this section we first discuss application trends that result in increased choices for schedul-

ing (§5.1.1). We then explain data-aware scheduling (§5.1.2) and quantify its potential benefit in
production clusters (§5.1.3).

5.1.1 Application Trends
With the rapid increase in the volume of data collected, it has become prohibitively expensive

for data analytics frameworks to operate on all of the data. To provide timely results, there is a
trend towards trading off accuracy for performance. Quick results obtained from just part of the
dataset are often good enough.
(1) Machine Learning: The last few years has seen the deployment of large-scale distributed ma-
chine learning algorithms for commercial applications like spam classification [104] and machine
translation [32]. Recent advances [29] have introduced stochastic versions of these algorithms, for
example stochastic gradient descent [28] or stochastic L-BFGS [145], that can use small random
data samples and provide statistically valid results even for large datasets. These algorithms are
iterative and each iteration processes only a small sample of the data. Stochastic algorithms are
agnostic to the sample selected in each iteration and support flexible scheduling.
(2) Approximate Query Processing: Many analytics frameworks support approximate query pro-
cessing (AQP) using standard SQL syntax (e.g., BlinkDB [7], Presto [63]). They power many
popular applications like exploratory data analysis [34, 152] and interactive debugging [8]. For
example, products analysts could use AQP systems to quickly decide if an advertising campaign
needs to be changed based on a sample of click through rates. AQP systems can bound both the
time taken and the quality of the result by selecting appropriately sized inputs (samples) to met the
deadline and error bound. Sample sizes are typically small relative to the original data (often, one-
twentieth to one-fifth [111]) and many equivalent samples exist. Thus, sample selection presents a
significant opportunity for smart scheduling.
(3) Erasure Coded Storage: Rise in data volumes have also led to clusters employing efficient
storage techniques like erasure codes [137]. Erasure codes provide fault tolerance by storing k
extra parity blocks for every n data blocks. Using any n data blocks of the (n+ k) blocks, ap-
plications can compute their input. Such storage systems also provide choices for data-aware
scheduling.

Note that while the above applications provide an opportunity to pick any subset of the input
data, our system can also handle custom sampling functions, which generate samples based on
application requirements.

5.1.2 Data-Aware Scheduling
Data aware scheduling is important for both the input as well as intermediate stages of jobs

due to their IO-intensive nature. In the input stage, tasks reads their input from a single machine
and the natural goal is locality i.e. to schedule the task on a machine that stores its input (§5.1.2).
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Figure 5.1: Late binding allows applications to specify more inputs than tasks and schedulers dynamically
choose task inputs at execution time.

For intermediate stages, tasks have their input spread across multiple machines. In this case, it is
not possible to co-locate the task with all its inputs. Instead, the goal in this case is to schedule the
task at a machine that minimizes the time it takes to transfer all remote inputs. As over-subscribed
cross-rack links are the main bottleneck in reads [47], we seek to balance the utilization of these
links (§5.1.2).

Memory Locality for Input Tasks

Riding on the trend of falling memory prices, clusters are increasingly caching data in mem-
ory [14, 177]. As memory bandwidths are about 10x to 100x greater than the fastest network
bandwidths, data reads from memory provide dramatic acceleration for the IO-intensive analytics
jobs. However, to reap the benefits of in-memory caches, tasks have to be scheduled with memory
locality, i.e., on the same machine that contains their input data. Obtaining memory locality is im-
portant for timely completion of interactive approximate queries [12]. Iterative machine learning
algorithms typically run 100’s of iterations and lack of memory locality results in huge slowdown
per iteration and the overall job.

Achieving memory locality is a challenging problem in clusters. Since in-memory storage is
used only as a cache, data stored in memory is typically not replicated. Further, the amount of
memory in a cluster is relatively small (often by three orders of magnitude [12]) when compared
to stable storage: this difference means that replicating data in memory is not practical. Therefore,
techniques for improving locality [10] developed for disk-based replicated storage are insufficient;
they rely on the probability of locality increasing with the number of replicas. Further, as job com-
pletion times are dictated by the slowest task in the job, improving performance requires memory
locality for all its tasks [14].

These challenges are reflected in production Hadoop clusters. A Facebook trace from 2010 [10,
46] shows that less than 60% of tasks achieve locality even with three replicas. As in-memory data
is not replicated, it is harder for jobs to achieve memory locality for all their tasks.
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Figure 5.2: Value of balanced network usage for a job with 4 map tasks and 4 reduce tasks. The left-hand
side has unbalanced cross-rack links (maximum of 6 transfers, minimum of 2) while the right-hand side has
better balance (maximum of 4 transfers, minimum of 3).

Balanced Network for Intermediate Tasks

Intermediate stages of a job have communication patterns that result in their tasks reading in-
puts from many machines (e.g., all-to-all “shuffle” or many-to-one “join” stages). For I/O intensive
intermediate tasks, the time to access data across the network dominates the running time, more
so when intermediate outputs are stored in memory. Despite fast network links [165] and newer
topologies [9,77], bandwidths between machines connected to the same rack switch are still 2× to
5× higher than to machines outside the rack switch via the network core. Thus the runtime for an
intermediate stage is dictated by the amount of data transferred across racks. Prior work has also
shown that reducing cross-rack hotspots, i.e., optimizing the bottleneck cross-rack link [11,49] can
significantly improve performance.

Given the over-subscribed cross-rack links and the slowest tasks dictating job completion, it is
important to balance traffic on the cross-rack links [26]. Figure 5.2 illustrates the result of having
unbalanced cross-rack links. The schedule in Figure 5.2(b) results in a cross-rack skew, i.e., ratio of
the highest to lowest used network links, of only 4

3
(or 1.33) as opposed to 6

2
(or 3) in Figure 5.2(a).

To highlight the importance of cross-rack skew, we used a trace of Hadoop jobs run in a Face-
book cluster from 2010 [46] and computed the cross-rack skew ratio. Figure 5.3(a) shows a CDF
of this ratio and is broken down by the number of map tasks in the job. From the figure we can see
that for jobs with 50−150 map tasks more than half of the jobs have a cross-rack skew of over 4×.
For larger jobs we see that the median is 15× and the 90th percentile value is in excess of 30×.
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5.1.3 Potential Benefits
How much do the above-mentioned lack of locality and imbalanced network usage hurt jobs?

We estimate the potential for data-aware scheduling to speed up jobs using the same Facebook
trace (described in detail in §5.5). We mimic job performance with an ideal data-aware scheduler
using a “what-if” simulator. Our simulator is unconstrained and (i) assigns memory locality for
all the tasks in the input phase (we assume 20× speed up for memory locality [121] compared to
reading data over the network based on our micro-benchmark) and (ii) places tasks to perfectly
balance cross-rack links. We see that jobs speed up by 87.6% on average with such ideal data-
aware scheduling.

Given these potential benefits, we have designed KMN, a scheduling framework that exploits
the available choices to improve performance. At the heart of KMN lie scheduling techniques to
increase locality for input (§5.2) stages and balance network usage for intermediate (§5.3) stages.
In §5.4, we describe an interface that allows applications to specify all available choices to the
scheduler.

5.2 Input Stage
For the input stage (i.e., the map stage in MapReduce or the extract stage in Dryad) accounting

for combinatorial choice leads to improved locality and hence reduced completion time. Here we
analyze the improvements in locality in two scenarios: in §5.2.1 we look at jobs which can use any
K of the N input blocks; in §5.2.2 we look at jobs which use a custom sampling function.

We assume a cluster with s compute slots per machine. Tasks operate on one input block
each and input blocks are uniformly distributed across the cluster, this is in line with the block
placement policy used by Hadoop. For ease of analysis we assume machines in the cluster are
uniformly utilized (i.e., there are no hot-spots). In our evaluation §5.5) we consider hot-spots due
to skewed input-block and machine popularity.

5.2.1 Choosing any K out of N blocks
Many modern systems e.g., BlinkDB [7], Presto [63], AQUA [4] operate by choosing a random

subset of blocks from shuffled input data. These systems rely on the observation that block sam-
pling [43] is statistically equivalent to uniform random sampling (page 243 in [159]) when each
block is itself a random sample of the overall population. Given a sample size K, these systems
can operate on any K input blocks i.e., for an input of size N the scheduler can choose any one of(
N
K

)
combinations.

In the cluster setup described above, the probability that a task operating on an input block gets
locality is pt = 1− us where u is the cluster utilization (probability that all slots in a machine are
busy is = us). For such a cluster the probability for K out of N tasks getting locality is given by
the binomial CDF function with the probability of success = pt, i.e., 1−∑K−1

i=0

(
N
i

)
pit(1− pt)N−i.

The dominant factor in this probability is the ratio between K and N . In Figure 5.3(b) we
fix the number of slots per machine to s = 8 and plot the probability of K = 10 and K = 100
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Figure 5.3: Cross-rack skew and input-stage locality simulation.
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Figure 5.4: Probability of input-stage locality when using a sampling function which outputs f disjoint
samples. Sampling functions specify additional constraints for samples.

tasks getting locality in a job with varying input size N and varying cluster utilization. We observe
that the probability of achieving locality is high even when 90% of the cluster is utilized. We also
compare this to a baseline that does not exploit this combinatorial choice and pre-selects a random
K blocks beforehand. For the baseline the probability that all tasks are local drops dramatically
even with cluster utilization of 60% or less.

5.2.2 Custom Sampling Functions
Some systems require additional constraints on the samples used and use custom sampling

functions. These sampling functions can be used to produce several K-block samples and the
scheduler can pick any sample. The scheduler is however constrained to use all of the K-blocks
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from one sample. We consider a sampling function that produces f disjoint samples and analyze
locality improvements in this setting.

As noted previous, the probability of a task getting locality is pt = 1 − us. The probability
that all K blocks in a sample get locality is pKt . Since the f samples are disjoint (and therefore
the probability of achieving locality is independent) the probability that at least one among the f
samples can achieve locality is pj = 1 − (1 − pKt )f . Figure 5.4 shows the probability of K = 10
and K = 100 tasks achieving locality with varying utilization and number of samples. We see that
the probability of achieving locality significantly increases with f . At f = 5 we see that small jobs
(10 tasks) can achieve complete locality even when the cluster is 80% utilized.

We thus find that accounting for combinatorial choices can greatly improve locality for the
input stage. Next we analyze improvements for intermediate stages.

5.3 Intermediate Stages
Intermediate stages of jobs commonly involve one-to-all (broadcast), many-to-one (coalesce)

or many-to-many (shuffle) network transfers [48]. These transfers are network-bound and hence,
often slowed down by congested cross-rack network links. As described in §5.1.2, data-aware
scheduling can improve performance by better placement of both upstream and downstream tasks
to balance the usage of cross-rack network links.

While effective heuristics can be used in scheduling downstream tasks to balance network
usage (we deal with this in §5.4), they are nonetheless limited by the locations of the outputs of
upstream tasks. Scheduling upstream tasks to balance the locations of their outputs across racks
is often complicated due to many dynamic factors in clusters. First, they are constrained by data
locality (§5.2) and compromising locality is detrimental. Second, the utilization of the cross-rack
links when downstream tasks start executing are hard to predict in multi-tenant clusters. Finally,
even the size of upstream outputs varies across jobs and are not known beforehand.

We overcome these challenges by scheduling a few additional upstream tasks. For an upstream
stage with K tasks, we schedule M tasks (M > K). Additional tasks increase the likelihood that
task outputs are distributed across racks. This allows us to choose the “best” K out of M upstream
tasks, out of

(
M
K

)
choices, to minimize cross-rack network utilization. In the rest of this section,

we show analytically that a few additional upstream tasks can significantly reduce the imbalance
(§5.3.1). §5.3.2 describes a heuristic to pick the best K out of M upstream tasks. However, not
all M upstream tasks may finish simultaneously because of stragglers; we modify our heuristic to
account for stragglers in §5.3.3.

5.3.1 Additional Upstream Tasks
While running additional tasks can balance network usage, it is important to consider how

many additional tasks are required. Too many additional tasks can often lead to worsening of
overall cluster performance.
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Figure 5.5: Cross-rack skew as we vary M/K for uniform and log-normal distributions. Even 20% extra
upstream tasks greatly reduces network imbalance for later stages.
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Figure 5.6: CDF of cross-rack skew as we vary M/K for the Facebook trace.

We analyze this using a simple model of the scheduling of upstream tasks. For simplicity, we
assume that upstream task outputs are equal in size and network links are equally utilized. We only
model tasks at the level of racks and evaluate the cross-rack skew (ratio of the rack with largest and
smallest number of upstream tasks) using both synthetic distributions of upstream task locations
as well as data from our Facebook trace.



5.3. INTERMEDIATE STAGES 62

Synthetic Distributions: We first consider a scheduler that places tasks on racks uniformly at
random. Figure 5.5(a) plots the cross-rack skew in a 100 rack cluster for varying values of K (i.e.,
the stage’s desired number of tasks) and M/K (i.e., the fraction of additional tasks launched). We
can see that even with a scheduler that places the upstream tasks uniformly, there is significant
skew for large jobs when there are no additional tasks (M

K
= 1). This is explained by the balls and

bins problem [126] where the maximum imbalance is expected to be O(logn) when distributing n
balls.

However, we see that even with 10% to 20% additional tasks (M
K

= 1.1 − 1.2) the cross-
rack skew is reduced by ≥ 2×. This is because when the number of upstream tasks, n is > 12,
0.2n > logn. Thus, we can avoid most of the skew with just a few extra tasks.

We also repeat this study with a log normal distribution (θ = 0,m = 1) of upstream task
placement; this is more skewed compared to the uniform distribution. However, even with a log-
normal distribution, we again see that a few extra tasks can be very effective at reducing skew. This
is because the expected value of the most loaded bin is still linear and using 0.2n

additional tasks is sufficient to avoid most of the skew.
Facebook Distributions: We repeat the above analysis using the number and location of upstream
tasks of a phase in the Facebook trace (used in §5.1.2). Recall the high cross-rack skew in the
Facebook trace. Despite that, again, a few additional tasks suffices to eliminate a large fraction of
the skews. Figure 5.6 plots the results for varying values of M

K
for different jobs. A large fraction

of the skew is reduced by running just 10% more tasks. This is nearly 66% of the reductions we
get using M

K
= 2.

In summary we see that running a few extra tasks is an effective strategy to reduce skew, both
with synthetic as well as real-world distributions. We next look at mechanisms that can help us
achieve such reduction.

5.3.2 Selecting Best Upstream Outputs
The problem of selecting the best K outputs from the M upstream tasks can be stated as

follows: We are given M upstream tasks U = u1...uM , R downstream tasks D = d1...dR and
their corresponding rack locations. Let us assume that tasks are distributed over racks 1...L and
let U ′ ⊂ U be some set of K upstream outputs. Then for each rack we can define the uplink cost
C2i−1 and downlink cost C2i using a cost function Ci(U ′, D). Our objective then is to select U ′ to
minimize the most loaded link i.e.

argmin
U ′

max
i∈2L

Ci(U
′, D)

While this problem is NP-Hard [174], many approximation heuristics have been developed.
We use a heuristic that corresponds to spreading our choice of K outputs across as many racks as
possible.1

1 This problem is an instance of the facility location problem [53] where we have a set of clients (downstream
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Algorithm 3 Choosing K upstream outputs out of M using a round-robin strategy
1: Given: upstreamTasks - list with rack, index within rack for each task
2: Given: K - number of tasks to pick

3: // Number of upstream tasks in each rack
4: upstreamRacksCount = map()
5: // Initialize
6: for task in upstreamTasks do
7: upstreamRacksCount[task.rack] += 1
8: // Sort the tasks in round-robin fashion
9: roundRobin = upstreamTasks.sort(CompareTasks)

10: chosenK = roundRobin[0 : K]
11: return chosenK
12: Function{CompareTasks}{task1, task2}
13: if task1.idx != task2.idx then
14: // Sort first by index
15: return task1.idx < task2.idx
16: else
17: // Then by number of outputs
18: numRack1 = upstreamRacksCount[task1.rack]
19: numRack2 = upstreamRacksCount[task2.rack]
20: return numRack1 > numRack2
21: EndFunction

Our implementation for this approximation heuristic is shown in Algorithm 3. We start with
the list of upstream tasks and build a hash map that stores how many tasks were run on each rack.
Next we sort the tasks first by their index within a rack and then by the number of tasks in the rack.
This sorting criteria ensures that we first see one task from each rack, thus ensuring we spread our
choices across racks. We use an additional heuristic of favoring racks with more outputs to help
our downstream task placement techniques (§5.4.2). The main computation cost in this method is
the sorting step and hence this runs in O(MlogM) time for M tasks.

5.3.3 Handling Upstream Stragglers
While the previous section described a heuristic to pick the best K out of M upstream out-

puts, waiting for all M can be inefficient due to stragglers. Stragglers in the upstream stage can
delay completion of some tasks which cuts into the gains obtained by balancing the network links.
Stragglers are a common occurrence in clusters with many clusters reporting significantly slow
tasks despite many prevention and speculation solutions [11, 13, 186]. This presents a trade-off in
waiting for all M tasks and obtaining the benefits of choice in picking upstream outputs against
the wasted time for completion of all M upstream tasks including stragglers. Our solution for

tasks), set of potential facility locations (upstream tasks), a cost function that maps facility locations to clients (link
usage). Our heuristic follows from picking a facility that is farthest from the existing set of facilities [65].
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(a) Percentage of time spent waiting for additional up-
stream tasks when running 2%, 5% or 10% extra tasks.
Stage completion time can be increased by up 20%−40%
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(b) Percentage of additional time spent in downstream
data transfer when not using choices from 2%, 5% or
10% extra tasks. Decrease in choice increases data trans-
fer time by 20%− 40%.

Figure 5.7: Simulations to show how choice affects stragglers and downstream transfer

this problem is to schedule downstream tasks at some point after K upstream tasks have com-
pleted but not wait for the stragglers in the M tasks. We quantify this trade-off with analysis and
micro-benchmarks.

Stragglers vs. Choice

We study the impact of stragglers in the Facebook trace when we run 2%, 5% and 10% extra
tasks (i.e., M

K
= 1.02, 1.05, 1.1). We compute the difference between the time taken for the fastest

K tasks and the time to complete all M tasks. Figure 5.7(a) shows that waiting for the extra tasks
can inflate the completion of the upstream phase by 20%− 40% (for jobs with > 150 tasks). Also,
the trend of using a large number of small tasks [135] for interactive jobs will only worsen such
inflation. On the other hand avoiding upstream stragglers by using the fastest tasks reduces the
available choice. Consequently, the time taken for downstream data transfer increases. The lack
of choices from extra tasks means we cannot balance network usage. Figure 5.7(b) shows that
not using choice from additional tasks can increase data transfer time by 20% for small jobs (11
to 50 tasks) and up to 40% for large jobs (> 150 tasks). We now devise a simple approach to
balance between the above two factors—waiting for upstream stragglers versus losing choice for
downstream data transfer.

Delayed Stage Launch

The problem we need to solve can be formulated as: we have M upstream tasks u1, u2, ..., uM
and for each task we have corresponding rack locations. Our goal is to find the optimal delay after
the first K tasks have finished, such that the overall time taken is minimized. In other words, our
goal is to find the optimal K ′ tasks to wait for before starting the downstream tasks.
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We begin with assuming an oracle that can give us the task finish times for all the tasks. Given
such a oracle we can sort the tasks in an increasing order of finish times such that Fj ≥ Fi ∀j > i.
Let us define the waiting delay for tasks K + 1 to M as Di = Fi − Fk ∀i > k. We also assume
that given K ′ tasks, we can compute the optimal K tasks to use (§5.3.2) and the estimated transfer
time SK′ .

Our problem is to pick K ′ (K ≤ K ′ ≤ M ) such that the total time for the data transfer is
minimized. That is we need to pick K ′ such that Fk +Dk′ + Sk′ is minimized. In this equation Fk
is known and independent of K ′. Of the other two, Dk′ increases as k′ goes from K to M, while
Sk′ decreases. However as the sum of an increasing and decreasing function is not necessarily
convex 2 it isn’t easy to minimize the total time taken.

Delay Heuristic: While the brute-force approach would require us to try all values from K to
M , we develop two heuristics that allow us to bound the search space and quickly find the optimal
value of K ′.

• Bounding transfer: At the beginning of the search procedure we find the maximum possible
improvement we can get from picking the best set of tasks. Whenever the delay DK′ is
greater than the maximum improvement, we can stop the search as the succeeding delays
will increase the total time.

• Coalescing tasks: We can also coalesce a number of task finish events to further reduce the
search space. For example we can coalesce task finish events which occur close together by
time i.e., casesDi+1−Di < δ. This will mean our result is off by at most δ from the optimal,
but for small values of δ we can coalesce tasks of a wave that finish close to each other.

Using these heuristics we can find the optimal number of tasks to wait for quickly. For example,
in the Facebook trace described before using M/K = 1.1 or 10% extra tasks, determining the
optimal wait time for a job requires looking at less than 4% of all configurations when we use a
coalescing error of 1%. We found coalescing tasks to be particularly useful as even with a δ of
0.1% we need to look at around 8% of all possible configurations. Running without any coalescing
is infeasible since it takes ≈ 1000 ms.

Finally, we relax our assumption of an oracle as follows. While the task finish times are not
exactly known beforehand, we use job sizes to figure out if the same job has been run before. Based
on this we use the job history to predict the task finish times. This approach should work well for
clusters that have many jobs run periodically [83]. In case the job history is not available we can
fit the tasks length distribution using the first few task finish times and use that to get approximate
task finish times for the rest of the tasks [60].

5.4 KMN Implementation
We have built KMN on top of Apache Spark [184] version 0.7.3 and KMN consists of 1400

lines of Scala code. We next discuss some of the features and challenges in our implementation.
2Take any non-convex function and make its increasing region Fi and its decreasing region Fd and it can be seen

that the sum isn’t convex.
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5.4.1 Application Interface
We define a blockSample operator which jobs can use to specify input constraints (for in-

stance, use K blocks from file F ) to the framework.The blockSample operator takes two argu-
ments: the ratio K

N
and a sampling function that can be used to impose constraints. The sampling

function can be used to choose user-defined sampling algorithms (e.g., stratified sampling). By
default the sampling function picks any K of N blocks.

Consider an example SQL query and its corresponding Spark [184] version shown in Fig-
ure 5.8. To run the same query in KMN we just need to prefix the query with the blockSample
operator. The sampler argument is a Scala closure and passing None causes the scheduler to use
the default function which picks any K out of the N input blocks. This design can be readily
adapted to other systems like Hadoop MapReduce and Dryad.

KMN also provides an interface for jobs to introspect which samples where used in a compu-
tation. This can be used for error estimation using algorithms like Bootstrap [6] and also provides
support for queries to be repeated. We implement this in KMN by storing the K partitions used
during computation as a part of a job’s lineage. Using the lineage also ensures that the same
samples are used if the job is re-executed during fault recovery [184].

5.4.2 Task Scheduling
We modify Spark’s scheduler in KMN to implement the techniques described in earlier sec-

tions.

Input Stage

Schedulers for frameworks like MapReduce or Spark typically use a slot-based model where
the scheduler is invoked whenever a slot becomes available in the cluster. In KMN, to choose any
K out of N blocks we modify the scheduler to run tasks on blocks local to the first K available
slots. To ensure that tasks don’t suffer from resource starvation while waiting for locality, we use a
timeout after which tasks are scheduled on any available slot. Note that, choosing the first K slots
provides a sample similar or slightly better in quality compared to existing systems like Aqua [4]
or BlinkDB [7] that reuse samples for short time periods. To schedule jobs with custom sampling
functions, we similarly modify the scheduler to choose among the available samples and run the
computation on the sample that has the highest locality.

Intermediate Stage

Existing cluster computing frameworks like Spark and Hadoop place intermediate stages with-
out accounting for their dependencies. However smarter placement which accounts for a tasks’
dependencies can improve performance. We implemented two strategies in KMN:

Greedy assignment: The number of cross-rack transfers in the intermediate stage can be re-
duced by co-locating map and reduce tasks (more generally any dependent tasks). In the greedy
placement strategy we maximize the number of reduce tasks placed in the rack with the most map
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// SQL Query
SELECT status, SUM(quantity)
FROM items
GROUP BY status

// Spark Query
kv = file.map{ li =>

(li.l_linestatus,li.quantity)}
result = kv.reduceByKey{(a,b) =>

a + b}.collect()

// KMN Query
sample = file.blockSample(0.1, sampler=None)
kv = sample.map{ li =>

(li.l_linestatus,li.quantity)}
result = kv.reduceByKey{(a,b) =>

a + b}.collect()

Figure 5.8: An example of a query in SQL, Spark and KMN

tasks. This strategy works well for small jobs where network usage can be minimized by placing
all the reduce tasks in the same rack.

Round-robin assignment: While greedy placement minimizes the number of transfers from
map tasks to reduce tasks it results in most of the data being sent to one or a few racks. Thus
the links into these racks are likely to be congested. This problem can be solved by distributing
tasks across racks while simultaneously minimizing the amount of data sent across racks. This can
be achieved by evenly distributing the reducers across racks with map tasks. This strategy can be
shown to be optimal if we know the map task locations and is similar in nature to the algorithm
described in §5.3.2. We perform a more detailed comparison of the two approaches in §5.5

5.4.3 Support for extra tasks
One consequence of launching extra tasks to improve performance is that the cluster utilization

could be affected by these extra tasks. To avoid utilization spikes, in KMN the value for M/K (the
percentage of extra tasks to launch) can only be set by the cluster administrator and not directly
by the application. Further, we implemented support for killing tasks once the scheduler decides
that the tasks’ output is not required. Killing tasks in Spark is challenging as tasks are run in
threads and many tasks share the same process. To avoid expensive clean up associated with
killing threads [96], we modified tasks in Spark to periodically poll and check a status bit. This
means that tasks sometimes could take a few seconds more before they are terminated, but we
found that this overhead was negligible in practice.

In KMN, using extra tasks is crucial in extending the flexibility of many choices throughout the
DAG. In §5.2 and §5.3 we discussed how to use the available choices in the input and intermediate
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Job Size % of Jobs
1 to 10 57.23

11 to 100 41.02
> 100 4.82

Table 5.1: Distribution of job sizes in the scaled down version of the Facebook trace used for evaluation.

stages in a DAG. However, jobs created using frameworks like Spark or DryadLINQ can extend
across many more stages. For example, complex SQL queries may use a map followed a shuffle
to do a group-by operation and follow that up with a join. One solution to this would be run more
tasks than required in every stage to retain the ability to choose among inputs in succeeding stages.
However we found that in practice this does not help very much. In frameworks like Spark which
use lazy evaluation, every stage following than the first stage is treated as an intermediate stage.
As we use a round-robin strategy to schedule intermediate tasks (§5.4.2), the outputs from the first
intermediate stage are already well spread out across the racks. Thus there isn’t much skew across
racks that affects the performance of following stages. In evaluation runs we saw no benefits for
later stages of long DAGs.

5.5 KMN Evaluation
In addition to machine learning workload, we evaluate the benefits of KMN using two ap-

proaches: first we run approximate queries used in production at Conviva, a video analytics com-
pany, and study how KMN compares to using existing schedulers with pre-selected samples. Next
we analyze how KMN behaves in a shared cluster, by replaying a workload trace obtained from
Facebook’s production Hadoop cluster.

Metric: In our evaluation we measure percentage improvement of job completion time when
using KMN. We define percentage improvement as:

% Improvement =
Baseline Time− KMN Time

Baseline Time
× 100

Our evaluation shows that,

• KMN improves real-world sampling-based queries from Conviva by more than 50% on av-
erage across various sample sizes and machine learning workloads by up to 43%.

• When replaying the Facebook trace, on an EC2 cluster, KMN can improve job completion
time by 81% on average (92% for small jobs)

• By using 5% – 10% extra tasks we can balance bottleneck link usage and decrease shuffle
times by 61% – 65% even for jobs with high cross-rack skew.
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Figure 5.9: Execution DAG for Stochastic Gradi-
ent Descent (SGD).

Job Size % Overall % Map Stage % Shuffle
1 to 10 92.8 95.5 84.61

11 to 100 78 94.1 28.63
> 100 60.8 95.4 31.02

Table 5.2: Improvements over baseline, by job size
and stage
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Figure 5.10: Benefits from using KMN for Stochastic Gradient Descent

5.5.1 Setup
Cluster Setup:We run all our experiments using 100 m2.4xlarge machines on Amazon’s EC2

cluster, with each machine having 8 cores, 68GB of memory and 2 local drives. We configure
Spark to use 4 slots and 60 GB per machine. To study memory locality we cache the input dataset
before starting each experiment. We compare KMN with a baseline that operates on a pre-selected
sample of sizeK and does not employ any of the shuffle improvement techniques described in §5.3,
§5.4. We also label the fraction of extra tasks run (i.e., M/K), so KMN-M/K = 1.0 has K = M
and KMN-M/K = 1.05 has 5% extra tasks. Finally, all experiments were run at least three times
and we plot median values across runs and use error bars to show minimum and maximum values.
Workload: Our evaluation uses a workload trace from Facebook’s Hadoop cluster [46]. The traces
are from a mix of interactive and batch jobs and capture over half a million jobs on a 3500 node
cluster. We use a scaled down version of the trace to fit within our cluster and use the same inter-
arrival times and the task-to-rack mapping as in the trace. Unless specified, we use 10% sampling
when running KMN for all jobs in the trace.

5.5.2 Benefits of KMN
We evaluate the benefits of using KMN on three workloads: real-world approximate queries

from Conviva, a machine learning workload running stochastic gradient descent and a Hadoop
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workload trace from Facebook.
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Figure 5.11: Comparing baseline and KMN-1.05 with sampling-queries from Conviva. Numbers on the
bars represent percentage improvement when using KMN-M/K = 1.05.

Conviva Sampling jobs

We first present results from running 4 real-world sampling queries obtained from Conviva, a
video analytics company. The queries were run on access logs obtained across a 5-day interval.
We treat the entire data set as N blocks and vary the sampling fraction (K/N ) to be 1%, 5% and
10%. We run the queries at 50% cluster utilization and run each query multiple times.

Figure 5.11 shows the median time taken for each query and we compare KMN-M/K = 1.05
to the baseline that uses pre-selected samples. For query 1 and query 2 we can see that KMN gives
77%–91% win across 1%, 5% and 10% samples. Both these queries calculate summary statistics
across a time window and most of the computation is performed in the map stage. For these
queries KMN ensures that we get memory locality and this results in significant improvements.
For queries 3 and 4, we see around 70% improvement for 1% samples, and this reduces to around
25% for 10% sampling. Both these queries compute the number of distinct users that match a
specified criteria. While input locality also improves these queries, for larger samples the reduce
tasks are CPU bound (while they aggregate values).

Machine learning workload

Next, we look at performance benefits for a machine learning workload that uses sampling.
For our analysis, we use Stochastic Gradient Descent (SGD). SGD is an iterative method that
scales to large datasets and is widely used in applications such as machine translation and image
classification. We run SGD on a dataset containing 2 million data items, where each each item
contains 4000 features. The complete dataset is around 64GB in size and each of our iterations
operates on a 1% sample 1% of the data. Thus the random sampling step reduces the cost of
gradient computation by 100× but maintains rapid learning rates [143]. We run 10 iterations in
each setting to measure the total time taken for SGD.

Each iteration consists of a DAG comprised of a map stage where the gradient is computed
on sampled data items and the gradient is then aggregated from all points. The aggregation step
can be efficiently performed by using an aggregation tree as shown in Figure 5.9. We implement
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ity for the Map Stage for the Facebook trace.
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provement using KMN-M/K = 1.05.

the aggregation tree using a set of shuffle stages and use KMN to run extra tasks at each of these
aggregation stages.

The overall benefits from using KMN are shown in Figure 5.10(a). We see that KMN-M/K =
1.1 improves performance by 43% as compared to the baseline. These improvements come from a
combination of improving memory locality for the first stage and by improving shuffle performance
for the aggregation stages. We further break down the improvements by studying the effects of
KMN at every stage in Figure 5.10(b).

When running extra tasks for only the first stage (gradient stage), we see improvements of
around 26% for the first aggregation (Aggregate 1); see KMN (First Stage). Without extra tasks the
next two aggregation stages (Aggregate 2 and Aggregate 3) behave similar to KMN-M/K = 1.0.
When extra tasks are spawned for later stages too, benefits propagate and we see 50% improvement
in the second aggregation (Aggregate-2) while using KMN for the first two stages. However,
propagating choice across stages does impose some overheads. Thus even though we see that
KMN (First Three Stages) improves the performance of the last aggregation stage (Aggregate 3),
running extra tasks slows down the overall job completion time (Job). This is because the final
aggregation steps usually have fewer tasks with smaller amounts of data, which makes running
extra tasks not worth the overhead. We plan to investigate techniques to estimate this trade-off and
automatically determine which stages to use KMN for in the future.

Facebook workload

We next quantify the overall improvements across the trace from using KMN. To do this, we use
a baseline configuration that mimics task locality from the original trace while using pre-selected
samples. We compare this to KMN-M/K = 1.05 that uses 5% extra tasks and a round-robin
reducer placement strategy (§5.4.2). The results showing average job completion time broken
down by job size is shown in Figure 5.12 and relative improvements are shown in Table 5.2. As
seen in the figure, using KMN leads to around 92% improvement for small jobs with < 10 tasks
and more than 60% improvement for all other jobs. Across all jobs KMN-M/K = 1.05 improves
performance by 81%, which is 93% of the potential win (§5.1.3).

To quantify where we get improvements from, we break down the time taken by different stages
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Figure 5.15: Boxplot showing utilization distri-
bution for different values of average utilization.

of a job. Improvements for the input stage or the map stage are shown in Figure 5.13. We can see
that using KMN we are able to get memory locality for almost all the jobs and this results in around
94% improvement in the time taken for the map stage. This is consistent with the predictions from
our model in §5.2 and shows that pushing down sampling to the run-time can give tremendous
benefits. The improvements in the shuffle stage are shown in Figure 5.16. For small jobs with
< 10 tasks we get around 85% improvement and these are primarily because we co-locate the
mappers and reducers for small jobs and thus avoid network transfer overheads. For large jobs
with > 100 tasks we see around 30% improvement due to reduction in cross-rack skew.

5.5.3 Input Stage Locality
Next, we attempt to measure how the locality obtained by KMN changes with cluster utiliza-

tion. As we vary the cluster utilization, we measure the average job completion time and fraction of
jobs where all tasks get locality. The results shown in Figure 5.14 show that for up to 30% average
utilization, KMN ensures that more than 80% of jobs get perfect locality. We also observed sig-
nificant variance in the utilization during the trace replay and the distribution of utilization values
is shown as a boxplot in Figure 5.15. From this figure we can see that while average utilization is
30% we observe utilization spikes of up to 90%. Because of such utilization spikes, we see periods
of time where all jobs do not get locality.

Finally, at 50% average utilization (utilization spikes > 90%) only around 45% of jobs get
locality. This is lower than predictions from our model in §5.2. There are two reasons for this
difference: First, our experimental cluster has only 400 slots and as we do 10% sampling (K/N =
0.1), the setup doesn’t have enough choices for jobs with > 40 map tasks. Further the utilization
spikes also are not taken into account by the model and jobs which arrive during a spike do not get
locality.

5.5.4 Intermediate Stage Scheduling
In this section we evaluate scheduling decisions by KMN for intermediate stages. First we look

at the benefits from running additional map tasks and then evaluate the delay heuristic used for
straggler mitigation. Finally we also measure KMN’s sensitivity to reducer placement strategies.
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Job Size M/K = 1.0 M/K =1.05 M/K =1.1
1 to 10 85.04 84.61 83.76

11 to 100 27.5 28.63 28.18
> 100 14.44 31.02 36.35

Table 5.3: Shuffle time improvements over baseline while varying M/K
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tra tasks.
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Effect of varying M/K

We evaluate the effect of running extra map tasks (i.e M/K > 1.0) and measure how that
influences the time taken for shuffle operations. For this experiment we wait until all the map tasks
have finished and then calculate the best reducer placement and choose the best K map outputs as
per techniques described in §5.3.2. The average time for the shuffle stage for different job sizes is
shown in Figure 5.16 and the improvements with respect to the baseline are shown in Table 5.3.
From the figure, we see that for small jobs with less than 10 tasks there is almost no improvement
from running extra tasks as they usually do not suffer from cross-rack skew. However for large jobs
with more than 100 tasks, we now get up to 36% improvement in shuffle time over the baseline.

Further, we can also analyze how the benefits are sensitive to the cross-rack skew. We plot
the average shuffle time split by cross-rack skew in Figure 5.17. Correspondingly we list the
improvements over the baseline in Table 5.4. We can see that for jobs which have low cross-rack
skew, we get up to 33% improvement when using KMN-M/K = 1.1. Further, for jobs which have
cross-rack skew > 8, we get up to 65% improvement in shuffle times and a 17% improvement over
M/K = 1.

Delayed stage launch

We next study the impact of stragglers and the effect of using the delayed stage launch heuristic
from §5.3.3. We run the Facebook workload at 30% cluster utilization with KMN-M/K = 1.1
and compare our heuristic to two baseline strategies. In one case we wait for the first K map tasks
to finish before starting the shuffle while in the other case we wait for all M tasks for finish. The
performance break down for each stage is shown in Figure 5.18. From the figure we see that for
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Cross-rack skew M/K=1.0 M/K =1.05 M/K =1.1
≤ 4 24.45 29.22 30.81

4 to 8 15.26 27.60 33.92
≥ 8 48.31 61.82 65.82

Table 5.4: Shuffle improvements with respect to baseline as cross-rack skew increases.
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Figure 5.18: Benefits from straggler mitigation and delayed stage launch.

small jobs (< 10 tasks) which don’t suffer from cross-rack skew, KMN performs similar to picking
the first K map outputs. This is because in this case stragglers dominate the shuffle wins possible
from using extra tasks. For larger tasks we see that our heuristic can dynamically adjust the stage
delay to ensure we avoid stragglers while getting the benefits of balanced shuffle operations. For
example for jobs with > 10 tasks KMN adds 5%− 14% delay after first K tasks complete and still
gets most of the shuffle benefits. Overall, this results in an improvement of up to 35%.

For more fine-grained analysis we also ran an event-driven simulation that uses task completion
times from the same Facebook trace. The CDF of extra map tasks used is shown in Figure 5.20,
where we see that around 80% of the jobs wait for 5% or more map tasks. We also measured
the time relative to when the first K map tasks finished and to normalize the delay across jobs
we compute the relative wait time. Figure 5.19 shows the CDF of relative wait times and we see
that the delay is less than 25% for 62% of the jobs. The simulation results again show that our
relative delay is not very long and that job completion time can be improved when we use extra
tasks available within a short delay.

Sensitivity to reducer placement

To evaluate the importance of reduce placement strategy, we compare the time taken for the
shuffle stage for the round-robin strategy described in §5.4.2 against a greedy assignment strategy
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that attempts to pack reducers into as few machines as possible. Note that the baseline used in
our earlier experiments used a random reducer assignment policy and §5.5.2 compares the round-
robin strategy to random assignment. Figure 5.21 shows the results from this experiment with the
results broken down by job size. From the results we can see that for jobs with > 10 tasks using
a round-robin placement can improve performance by 10%-30%. However for very small jobs,
running tasks on more machines increases the variance and the greedy assignment in fact performs
8% better.

5.6 KMN Conclusion
The rapid growth of data stored in clusters, increasing demand for interactive analysis, and

machine learning workloads have made it inevitable that applications will operate on subsets of
data. It is therefore imperative that schedulers for cluster computing frameworks exploit the avail-
able choices to improve performance. As a step towards this goal we presented KMN, a system
that improves data-aware scheduling for jobs with combinatorial choices. Using our prototype
implementation, we see that KMN can improve performance by increasing locality and balancing
intermediate data transfers.



76

Chapter 6

Future Directions & Conclusion

This thesis presented new system designs for large scale machine learning. We first studied
the structure of machine learning workloads by considering a number of real world examples and
extracting the significant properties that are important from a system design perspective. Following
that we looked at how to understand performance characteristics of machine learning workloads by
building performance models. In order to make it cheap to build performance models we developed
Ernest, a tool that can be build performance models using just a few training data points. Finally
we showed how using a simple performance model helps users make deployment decisions when
using cloud computing infrastructure.

Analyzing the structure of machine learning workloads also helped us decompose the perfor-
mance into two main parts: the control plane which performs coordination of tasks running across
machines in a cluster and the data plane which dictates the time taken to transfer data and compute
on it. Using this decomposition we looked at how we could add support to improve performance
for machine learning workloads by making data processing schedulers aware of their structure.

In Drizzle we focused on low latency iterative workloads and, proposed group scheduling and
pre-scheduling to minimize coordination overheads. We also studied how to balance the coordi-
nation overheads while ensuring that workloads remain adaptable to machine failures. We gener-
alized our approach to stream processing workloads and showed how Drizzle is able to perform
better than BSP-style systems like Spark and continuous processing systems like Flink.

To optimize the data plane we designed KMN, a data-aware scheduling framework that exploits
the fact that machine learning workloads use sampling at each iteration. Based on this property we
studied how we can improve locality while reading input data. We extended our scheme to allow
for additional choice while performing shuffles and also discussed how we could avoid stragglers.
Finally we also extended our design to accommodate approximate query processing workloads
that sampled their input.

The techniques developed for this dissertation have been integrated into a number of software
projects. Our scheme of improving reducer locality is now a part of the Apache Spark distribution
and our straggler mitigation scheme from KMN is also used by machine learning libraries like
Tensorflow [3]. The low latency scheduling techniques proposed in Drizzle have been integrated
with BigDL, a deep learning framework [151] to reduce coordination overheads. Finally, our per-
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formance modeling approach of separating computation from communication was used to develop
the cost-based optimizer in KeystoneML [157].

6.1 Future Directions
We next discuss some of the future directions on system design for machine learning especially

in light of recent developments in algorithms and hardware.
Algorithm design. One of the main aspects of this thesis was that we tailored our system design
to closely match the properties of the algorithms. Correspondingly there are new opportunities in
designing algorithms while accounting for both the systems characteristics and the convergence
properties. For example if we consider solving linear systems, the Gauss-Seidel method com-
municates more data per-iteration than the Jacobi method. However Gauss-Seidel has a better
convergence rate than the Jacobi method and hence the appropriate algorithm to use depends on
both the network bandwidth available and the condition number of the problem being solved.

A similar trade-off can also be seen in terms of sampling schemes. Recent work [163] shows
that performing sampling with replacement improves convergence for block coordinate descent.
However sampling with replacement is usually very expensive at large scale. Some early work [138]
has shown how we can build upon Ernest, the performance prediction framework described in this
thesis, and predict convergence rates of various algorithms.

Heterogeneous Hardware. The primary focus of this thesis was on compute clusters with ho-
mogeneous hardware. Our performance models were hence designed with minimal information
about the hardware characteristics. With the growth in usage of GPUs [107], FPGAs [140] and
other custom hardware devices [101] for deep learning algorithms, there are more complex de-
sign decisions in how one chooses the appropriate hardware for a given problem. We believe that
our performance modeling techniques can be extended to include information about the hardware
and thus help us jointly optimize hardware selection with algorithm design. Similarly with the
widespread deployment of infiniband networks there are additional opportunities to encode net-
work topology into our design.

Generalization vs. Specialization. A classic design choice in systems is between building a
general purpose system that can be used across a number of applications as opposed to a specialized
system that is tuned for a particular class of applications. General purpose systems typically make
it easier to perform optimizations across workloads and simplify deployment. On the other hand
specialized systems typically have better performance as they are tuned for the specific workload
characteristics. In this thesis our approach was to pass through application characteristics to general
purpose systems to achieve better performance. Recent systems [3] developed for algorithms like
convolutional neural networks are specialized for their characteristics and lack support for features
like elasticity found in existing general purpose frameworks. Following the design patterns we
used in Drizzle and KMN, could help us further improve general purpose systems to handle new
workload classes.
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6.2 Concluding Remarks
With the growth of data collected across domains, machine learning methods play a key role

in converting data into valuable information that can be used to power decisions. As the data sizes
grow beyond what can be processed on a single machine, distributed data processing systems play
a key role in building machine learning models. Our approach of designing better systems started
from studying the execution properties of machine learning algorithms and characterizing how
they are different from existing data processing workloads. Following that we generalized these
properties to develop systems with better performance while maintaining resiliency and adaptabil-
ity.

The design goal of software systems it to develop abstractions that can enable rapid devel-
opment and good performance for commonly used workloads. Work towards this has led to the
creation of many widely used file systems, database systems, operating systems etc. The advent of
new workloads like large scale machine learning requires us to revisit the existing abstractions and
design new systems that can both meet the requirements and exploit the flexibility offered by these
workloads. This dissertation proposed system designs for training large scale machine learning
models and we believe our approach of jointly considering algorithms and systems can be applied
to other domains in the future.
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