
PBS at Work: Advancing Data Management
with Consistency Metrics

Peter Bailis, Shivaram Venkataraman, Michael J. Franklin, Joseph M. Hellerstein, Ion Stoica
UC Berkeley

ABSTRACT
A large body of recent work has proposed analytical and empir-
ical techniques for quantifying the data consistency properties of
distributed data stores. In this demonstration, we begin to explore
the wide range of new database functionality they enable, includ-
ing dynamic query tuning, consistency SLAs, monitoring, and ad-
ministration. Our demonstration will exhibit how both application
programmers and database administrators can leverage these fea-
tures. We describe three major application scenarios and present a
system architecture for supporting them. We also describe our ex-
perience in integrating Probabilistically Bounded Staleness (PBS)
predictions into Cassandra, a popular NoSQL store and sketch a
demo platform that will allow SIGMOD attendees to experience
the importance and applicability of real-time consistency metrics.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Distributed databases

Keywords
eventual consistency, monitoring, prediction; auto-tuning

1. INTRODUCTION
Modern distributed data stores offer a choice of consistency

models. Weak consistency models are fast and guarantee “always-
on” behavior but provide limited guarantees. Stronger consistency
models are easier to reason about but are slower and potentially un-
available [4]. The choice of a consistency model has wide-ranging
implications for application writers, operations management, and
end-users. Yet, in light of its performance benefits [2], weak con-
sistency is often considered acceptable.

Eventual consistency—perhaps the most commonly deployed
weak consistency model—is particularly weak: in the absence of
new writes to a data item, reads will eventually return the same
value [8]. This eventual consistency provides no guarantees as to
when new writes will become visible to readers and what versions
of data items will be presented in the interim. For example, read-
ing all null values from a database satisfies eventual consistency.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’13, June 22–27, 2013, New York, New York, USA.
Copyright 2013 ACM 978-1-4503-2037-5/13/06 ...$15.00.

Similarly, the data store can delay writes for weeks and not violate
eventual consistency guarantees. Yet, despite these weak seman-
tics, there is common sentiment among practitioners that eventual
consistency is often “good enough” and “worthwhile” for many In-
ternet applications.

In recent work, we provided quantitative metrics and accompa-
nying techniques for analyzing the consistency provided by even-
tually consistent stores, called Probabilistically Bounded Staleness,
or PBS [3]. Eventually consistent stores do not make promises
about the length of time required to observe an update or the stal-
eness of values, but this does not preclude us from making in-
formed statements about a store’s expected behavior. By using ex-
pert knowledge of the underlying data store and its replication pro-
tocols and performing lightweight in-situ profiling, we can inform
data store users about what consistency they are likely to observe
in the future. PBS provides a probabilistic answer to the question
of “how eventual and how consistent is eventual consistency?”

PBS predictions are part of a larger trend towards provid-
ing quantitative measurements and analysis of weakly consistent
stores. Recent work ranges from theoretical [5] to experimental
studies [6] of properties such as linearizability, serializability, and
regular register semantics. PBS in particular has experienced rela-
tive popularity in the NoSQL community and our implementation
of PBS for quorum-based systems was integrated with Cassandra’s
mainline source and released as a feature of the 1.2.0 release in
January 2013 [1]. Our discussions with other researchers indicate
the possibility of additional technology transfer of monitoring and
verification techniques in the future.

While monitoring and prediction are useful in themselves, per-
haps more importantly, they enable a rich space of applications that
were previously infeasible or impossible. Among these applica-
tions, we consider three to be the most promising: i.) dynamic
request-based consistency parameters, or auto-tuning request rout-
ing based on latency- and consistency-based service level agree-
ments (SLAs), ii.) database administration tasks with respect to the
impact of slow nodes and networks, replication factors, and data
store parameters like anti-entropy rates, and iii.) enhancement of
traditional alerting and monitoring frameworks. We elaborate fur-
ther in Section 2, but, in short, these quantitative metrics allow new
ways to improve the performance, semantics, and maintenance of
eventually consistent stores.

In this demo paper, we outline these advanced use cases in detail
(Section 2), describe how quantitative metrics can be integrated into
existing data stores based on our experiences with the Cassandra
community (Section 3), and sketch how we plan to demonstrate this
newly enabled functionality, allowing SIGMOD attendees to act as
end-users, operations managers, and adversaries of an eventually
consistent internet service (Section 4).

1.1 PBS Metrics
To provide background on consistency metrics, we briefly sum-

marize the metrics proposed in PBS [3]. Data staleness is expressed
in terms of two metrics: wall-clock time and versions.

t-visibility: t-visibility captures the “window of inconsistency“
in terms of wall clock time after a write happens. An eventually
consistent system will eventually respond to all read requests with
the last written value, and t-visibility provides an expected value
for this “eventuality.” More formally, t-visibility is the probability
that a read operation starting t seconds after the previous write com-
pleted will see the most recent value from the data store. For exam-
ple, if a data store configuration has t-visibility of 95% at 100ms,
it means that 100ms after the last write completes, 95% of read
operations will see the most recent value.

k-staleness: k-staleness determines the probability of a read re-
turning a value within a bounded number of versions. This estimate
can be useful for estimating the probability of experiencing mono-
tonic reads, under which users will never read older versions than
they have already read (i.e., reads do not “go back in time”) [8].

〈k, t〉-staleness: We can combine t-visibility and k-staleness
to consider both time- and version-based staleness together, called
〈k, t〉-staleness. For example, if a data store configuration has
〈k, t〉-staleness of 75% at 10ms and 3 versions, then 10ms after
the last write completes, 75% of reads will return a value that is no
more than 3 versions old.

2. USAGE SCENARIOS
Quantitative consistency metrics are useful for a variety of ser-

vices that can tolerate eventual consistency. In this section, we out-
line three use cases via short vignettes in the context of a hypothet-
ical microblogging service, DBSoc.

2.1 Dynamic Reconfiguration
Without quantitative guidance, choosing the correct values for

replication parameters is a difficult task. We believe that, instead
of reasoning about low-level replication settings, application writes
should instead declaratively specify their objectives in the form of
higher-level service agreements and allow the system to adjust its
parameters to meet this goal. For example, in Dynamo-style sys-
tems like Cassandra, applications can choose the minimum number
of replicas to read from (R) and write to (W). If R+W is greater
than the number of replicas (N), operations will achieve “strong”
consistency (regular register semantics), and, if not, the system pro-
vides eventual consistency. With a replication factor of N = 3, we
have several options for eventually consistent operation: for exam-
ple, 〈R=W=1〉 is guaranteed to be fastest, but it is also the “least
consistent,” while 〈R=2, W=1〉 is “more consistent” but slower.
Choosing the right configuration is non-trivial, especially without
data regarding the effect of a given choice. Instead of reasoning
about R and W , service operators should express their require-
ments in terms of tolerable staleness:

DBSoc’s data scientists have learned that their users respond
negatively to slow update propagation, and the company sets
a t-visibility target of 500ms at the 99.9th percentile for their
back-end data store requests (while minimizing latency).

How should we configure the replication parameters for a given
SLA? One approach is to manually tune the system—this is
straightforward but is not always robust to changing conditions:

Based on feedback from their infrastructure team, the developers
set R=W=1 for their Dynamo-based data store. This meets
the t-visibility consistency SLA, but, during peak traffic, the

consistency SLA is sporadically violated.

Instead of making a static assignment, metrics-enabled systems
can auto-tune the replication parameters for each request. Consis-
tency monitoring allows us to monitor SLA violations, while con-
sistency prediction allows us the system to test replication parame-
ter changes before making them:

A consistency auto-tuner chooses R=W=1 for most traffic but
switches to R=2, W=1 during peak workload times. While R=1,
W=2 is also a viable solution, the auto-tuner determines that the
99.9th percentile operation latency would suffer since most reads
are served from the data store’s buffer cache.

While the literature suggests several dynamic replication
schemes [9], we are pleased that these techniques can now become
a reality for production-ready data stores and real-world services.

2.2 DBA Tooling and Diagnoses
Consistency metrics can also be used in diagnostic tasks and to

understand why a system is misbehaving. There are a number of
system parameters that affect the performance and observed con-
sistency of a distributed data store. However, system administrators
currently face two major feature challenges: there is limited infor-
mation available in terms of real-time consistency properties and a
lack of mechanisms to understand how the system will behave as
parameters are varied.

The database administrators at DBSoc have received reports that
a high-profile user is seeing very stale data.

There are a host of consistency configuration options available
to data store administrators. Taking Cassandra as an example, the
administrators can configure read repair rates, perform active anti-
entropy value exchange, and enable or disable replicas. Moreover,
there are many causes for inconsistent reads: there may be slow
nodes in the cluster or certain keys may form “hot spots.”

The administrators inspect the consistency metrics for each data
store shard and identify a misbehaving set of nodes corresponding
to a bad top-of-rack switch. They temporarily increase the rate of
background version exchange for the shard and begin to spin up a
new replica set on a different rack before rebooting the switch.

We believe consistency metrics should allow standard analytics
such as fine-grained drill-downs and roll-ups across both logical
data items and physical-layer details like placement and hardware
details. If, as in our Cassandra implementation (Section 3), mon-
itoring is performed as a white-box, in-database service, low-level
details like network topologies and per-operation latencies will be
available to the administrator. Of course, it may be sufficient for
most operations to simply experiment with common configuration
parameters via prediction, but exposing such advanced analytics
functionality is likely useful for power users.

2.3 Monitoring and Alerts
Consistency metrics allow new approaches to monitoring:

DBSoc has a large number of DevOps staff who are responsible for
keeping the service online. Currently, their monitoring and pager
service is triggered when operation latency is high or if servers
fail. As user experience is negatively impacted by inconsistent
reads, the CTO configures custom alerts for the DevOps.

As we discussed in Section 2.1, some parameters like per-request
quorum settings, are amenable to SLA-based automatic control.
However, there are a number of scenarios where traditional, man-

PBS Predictions

Monte Carlo Simulation

Windowed Trace Buffering

Eventually Consistent Cluster

Alerts and SupervisionDBA Tools Autotuning

Consistency Monitoring

Online Analysis Algorithms

Async Operation Recording

NoSQL Store

Latency
Profiler

Figure 1: Architecture for integrating PBS metrics with an ex-
isting data store. The PBS prediction and consistency monitor-
ing modules provide metrics used by applications like dynamic
query tuning, monitoring, and diagnostic tools.

ual monitor-and-respond is an acceptable approach. If SLAs can-
not be met under any circumstances (e.g., operation latency and
t-visibility bounds are too restrictive), the correct response is to re-
vise the SLAs or perform more invasive operations (e.g., adding
more replicas) that may require active human oversight.

3. SYSTEM ARCHITECTURE
In this section, we briefly outline an architecture for providing

consistency prediction, monitoring, and verification given our ex-
periences implementing them in two production NoSQL stores—
Cassandra and Voldemort. The techniques used to implement PBS
are applicable to any system for which we can model the replication
protocol and only require lightweight profiling.

3.1 Data Store Architecture
The lower two layers of Figure 1 show the changes that are

required to integrate PBS-style metrics into an existing distributed
data store. In each replica, or storage node, we perform lightweight
latency profiling by piggybacking timestamps on messages
exchanged between servers. Two separate modules providing
consistency prediction and monitoring subsequently process this
data. The modules are cleanly separable from the main data store
implementation and can be adapted to different systems.

PBS Prediction: The PBS prediction module is responsible
for calculating the t-visibility and k-staleness of the data store.
This module records the latencies for relevant operations in the
data store (in Dynamo-style systems, the respective latencies
for writes, acknowledgments, reads, and responses—the PBS
WARS model) that are sent during replication. The prediction
module tracks a moving window of recent latencies across servers,
and, when an end-user (or higher-level component) requests a
consistency prediction, the module uses the latencies to provide
a prediction using Monte Carlo analysis. The module simulates
the interactions between thousands of read and write requests
that behave stochastically according to the observed distributions.
This allows us to estimate t-visibility, k-staleness, and latency for
the operations under a range of parameter choices: replication
factors, anti-entropy rates, and node failures. In our Cassandra
implementation, we found that thousands of prediction trials
typically complete within a second.

Consistency Monitoring: While predictions are useful, it is also
beneficial to know what consistency a data store is actually provid-

ing. While PBS gives a probability distribution function (PDF) of
reads that are consistent after a fixed amount of time, consistency
monitoring amounts to integrating over the PDF: what percent of
reads are actually consistent? Black box monitoring is somewhat
more difficult than predictions because determining the latest write
effectively requires consensus about the value of the latest write.
This requires substantially more coordination than prediction but is
the subject of considerable ongoing research [6].

On the other hand, our verifier for Cassandra uses white box
techniques similar to the PBS predictor. Even though an operation
might complete with a reply from a single replica (say R=1), the
monitoring module asynchronously collects data from all replicas.
The monitoring modules periodically exchange timing metadata for
writes, which is passed to an online analysis algorithm that detects
consistency violations.

3.2 Userspace Tools
As we described in Section 2.1, end-users can leverage consis-

tency prediction to build tools to inform and enforce consistency
SLAs. A simple, standalone tool can track the consistency and
latency profile of queries over time by periodically invoking the
PBS predictor. Database administrators can specify desired SLAs
in terms of acceptable values for a combination of t-visibility, k-
staleness, and operation latency. Based on the predictions, the en-
forcement tool can adjust replication parameters to ensure that the
SLA is met while minimizing observed latency. For typical replica-
tion factors, the number of possible configuration is limited, mean-
ing the tool can likely perform a complete state space search.

Database administrators can also leverage PBS predictions for
greater insight into the latency-consistency trade-offs for their de-
ployment. In our Cassandra implementation, we have added a new
command (predictconsistency) to nodetool, a widely
used administration interface. The predictconsistency
command provides a flexible interface for performing PBS predic-
tion. Data store administrators specify a hypothetical replication
configuration (N , R, W) along with a write visibility time and sub-
sequently receive a staleness prediction. This allows administrators
to perform “what-if” analysis and project the impact on latency and
consistency as their workload changes. We also export the consis-
tency metrics over a Java MBean interface, meaning any tool that
can interface with MBeans can receive prediction data.

Finally, administrators can use PBS to monitor the consistency
provided by their data store. In contrast to offline consistency ver-
ification schemes [5], PBS provides a lightweight mechanism that
can be used for (prediction-based) monitoring. Existing monitor-
ing solutions like Ganglia or DataStax’s OpsCenter periodically is-
sue PBS prediction requests and plot the values of t-visibility and
k-staleness as a time series. This can then be integrated with rule-
based alerting systems to page an operator if the value of t-visibility
passes beyond a particular threshold.

4. DEMO DETAILS
At SIGMOD 2013, we will present an end-to-end demonstra-

tion that will show how metrics defined by PBS can be used to im-
prove consistency and user experience. We will also highlight how
database administrators can monitor and modify system parameters
to trade-off consistency for latency. The demonstration will consist
of a user-facing application and several other components.

As a driving use case, we will implement DBSoc, a Twitter-like
microblogging application. DBSoc will expose a web interface that
will be available to all SIGMOD attendees and provide a mobile ap-
plication that can be used to post messages about the conference. In
addition to the messages posted by SIGMOD attendees, we plan to

https://pbs.cs.berkeley.edu/demo

Twissistency: PBS Made Live

@shivaram (-52ms) This talk is
excellent! #entityresolution

@stonebraker (-884ms) Remember, one
size doesn't fit all! #realtalk

Write something... PBS

@hellerstein (-1812ms) Keep CALM and
Query On! #monotonicity

@franklin (-2727ms) Twitter: the
perfect medium for broadcast disks?

(a) Mobile Web App

http://pbs.cs.berkeley.edu/demo/order.html

Time After Write (ms)

P(
C

o
n
si

st
e
n
cy

)

80%

100%

5 10 15 20 25

Read Repair Chance

1ms 100ms

0% 100%

Target 99.9th Percentile Latency

Current Consistency:

72%
of reads are fresh

(b) DBA and Query Tuning Dashboard

http://pbs.cs.berkeley.edu/demo/chaos.html

Network Delay
Variance (ms)

0 100

50

7525

Disk Delay
Variance (ms)

0 100

50

7525

Message Loss
Chance (%)

0 100

50

7525

C h a o s
Console

(c) Chaos Console

Figure 2: Mock-ups for the mobile social web application—which attendees will interact with as end-users—and back-end diagnostic
views. In the Dashboard, attendees can monitor system consistency and set latency and consistency SLAs. In the Chaos Console,
attendees will wreak havoc on the application’s Cassandra cluster via several (real-time) configurable failure modes.

replay a corpus of 4,937,001 Tweets from conversations obtained
from the Twitter firehose between February and July 2011 [7]. This
will help us explore heavier workloads, particularly in the absence
of a deluge of activity from SIGMOD attendees. DBSoc will store
messages in a Cassandra cluster running on Amazon EC2. PBS is
already integrated in Cassandra, but we will also augment Cassan-
dra to provide consistency monitoring as described in Section 3.1.

To illustrate the utility of consistency metrics, we will provide
attendees with the opportunity to experience consistency from three
perspectives: user, administrator, and powerful adversary.

The user interface screen will host the DBSoc front-end and
will allow attendees to post and read messages (Figure 2(a)). We
will also provide a setting that allows users to see how old messages
are and manually inspect the end-to-end delay for each message.

To provide the experience of a database administrator or opera-
tions technician, we will have a monitoring and control console
that measures and plots the consistency and latency over 10-second
time intervals (Figure 2(b)). Additionally the interface will allow
users to modify system parameters like the read repair chance and
set consistency SLAs for read and write operations. We will change
the system parameters in real-time, and the consistency SLAs will
affect all users’ actions on the site

Consistency is particularly interesting under changing environ-
mental conditions, so we will allow participants to control param-
eters like system latency and the performance of several replicas.
We will provide a chaos console, a separate interface that can be
used to inject message delays, model message loss, and artificially
slow Cassandra instances to demonstrate their effect on consistency
(Figure 2(c)). We will physically implement the actual failures via
both JVM manipulation and host-based kernel operations. In ad-
dition to improving engagement, this will allow attendees to both
induce consistency anomalies and understand the impact of several
common failure modes.

5. HIGH-LEVEL TAKEAWAY
Our demo will showcase new data store performance and admin-

istrative functionality enabled by emerging consistency prediction
and monitoring. Given the amount of academic interest in this topic
and recent industrial adoption, we believe there is merit in further
study of applications that leverage these metrics. As a proof-of-
concept of several of the applications we envision, this demonstra-
tion can serve as the impetus for a new wave of dynamic, intelli-
gent, and more easily operable distributed data stores. Consistency
metrics are coming; what else can we do with them?

Acknowledgments We would like to thank Jonathan Ellis for
his help in reviewing our Cassandra patch and Aaron Davidson,
Aviad Rubenstein, and Anirudh Todi for early experimentation
with dynamic quorum policies. This research is supported in
part by National Science Foundation grants CCF-1139158, CNS-
0722077, IIS-0713661, IIS-0803690, and IIS-0917349, DARPA
awards FA8650-11-C-7136 and FA8750-12-2-0331, Air Force
OSR Grant FA9550-08-1-0352, the NSF GRFP under Grant DGE-
1106400. and gifts from Amazon Web Services, Google, SAP, Blue
Goji, Cisco, Clearstory Data, Cloudera, EMC, Ericsson, Facebook,
General Electric, Hortonworks, Huawei, Intel, Microsoft, NetApp,
NTT Multimedia Communications Laboratories, Oracle, Quanta,
Samsung, Splunk, VMware and Yahoo!.

6. REFERENCES
[1] Apache Cassandra Jira: “Support consistency-latency

prediction in nodetool”. https://issues.apache.
org/jira/browse/CASSANDRA-4261. September
2012. (See also http://www.bailis.org/blog/
using-pbs-in-cassandra-1.2.0/ and
http://pbs.cs.berkeley.edu/#demo).

[2] D. J. Abadi. Consistency tradeoffs in modern distributed
database system design: CAP is only part of the story. IEEE
Computer, 45(2):37–42, 2012.

[3] P. Bailis, S. Venkataraman, M. J. Franklin, J. M. Hellerstein,
and I. Stoica. Probabilistically bounded staleness for practical
partial quorums. PVLDB, 5(8):776–787, 2012.

[4] S. Davidson, H. Garcia-Molina, and D. Skeen. Consistency in
partitioned networks. ACM Computing Surveys,
17(3):341–370, 1985.

[5] W. Golab, X. Li, and M. A. Shah. Analyzing consistency
properties for fun and profit. In PODC 2011, pages 197–206.

[6] M. Rahman, W. Golab, A. AuYoung, K. Keeton, and J. Wylie.
Toward a principled framework for benchmarking
consistency. In HotDep 2012.

[7] A. Ritter, C. Cherry, and B. Dolan. Unsupervised modeling of
Twitter conversations. In HLT-NAACL, pages 172–180, 2010.

[8] W. Vogels. Eventually consistent. CACM, 52:40–44, 2009.
[9] H. Yu and A. Vahdat. Design and evaluation of a conit-based

continuous consistency model for replicated services. ACM
TOCS, 20(3):239–282, 2002.

