
MoZyg: Secure Framework for Cross Platform Applications on
Mobile Devices

Will Dietz, Kevin Larson, Shivaram Venkataraman
{wdietz2, klarson5, venkata4}@illinois.edu
University of Illinois at Urbana Champaign

Abstract

Modern day smartphones are plagued with security vulner-
abilities. As smartphone adoption continues to increase,
and more sensitive information is stored on them, there is
an increasing need for a more secure solution. We devel-
oped MoZyg, a system for mobile devices that uses light-
weight OS-level virtualization to contain and isolate appli-
cations in order to increase security on these devices. Our
system has negligible overhead (5-10%), while provid-
ing strong security guarantees for the applications within.
MoZyg is designed to be added to an existing mobile de-
vice to provide security guarantees for native applications
while maintaining the original device experience. Addi-
tionally, MoZyg allows the use of desktop Linux applica-
tions on smartphones (while guaranteeing a secure execu-
tion context) enabling a much wider variety of applications
to be run on mobile devices than would previously be pos-
sible.

1 Introduction

Today, mobile devices run third party applications to
perform complex tasks like web browsing, banking and
gaming. Recent studies have found that smart-phones are
the target of an increasing number of malware attacks
[25, 3, 4] and their security is important as personal data
such as contacts, credit card numbers and passwords are
often stored on the device. While some security models
[2] provide process level isolation among applications,
operating system bugs such as [16, 15, 17] allow malicious
applications to take over the device. Recent reports have
even found that some smart phones had the Mariposa
botnet pre-installed [30]. Virtualization can be useful for
secure isolation of third party code from confidential data
and provides greater defense-in-depth against attacks on
the system.

In recent years, virtual machines have become prevalent
in cluster computing environments [1] as they provide
isolation for shared usage of machines in a data center.

As a result of hardware improvements, smart phone
configurations found today resemble desktop machines
from few years ago and many of them run commodity
operating systems. There is a growing interest in academia
[26] and industry [9] about the benefits of virtualization
on these devices. Virtualization provides better security
guarantees in mobile devices than current solutions offer.

Existing solutions for isolation of mobile applications
introduce a Type I hypervisor [32, 28] which manages
the phone’s hardware and allows running multiple oper-
ating systems on top. Popular Type II hypervisors like
KVM and QEMU either suffer from a large performance
overhead (refer Section 6) or are otherwise unusable. We
propose to have isolated applications which are integrated
with the host operating system’s application launcher and
do not suffer from a large performance penalty. In order to
achieve this goal, we have an isolation framework running
on the host operating system and a shared rendering engine
for improved performance.

We adopt an OS-level virtualization tool called Linux
Containers (LXC). Linux Containers present a low over-
head technique of isolating a process within a container. A
container is made up of several namespace virtualization
techniques, where the UID, user namespace, network
resources etc. are virtualized in order to prevent the
process inside the container from interfacing external
data or resources. Our tests show that the performance
overhead is within 5-10%, proving to be a promising
balance between isolation and performance.

The rest of this report is structured as follows: Section
2 presents an overview of the design and the next section
describes in detail some of the design choices we make.
Sections 4 describes our implementation and deployment
of MoZyg on smartphones. Evaluation of our system is
presented in Section 5. Section 7 discusses existing efforts
in this area and section 8 discusses future work.

1

ARM

X-­‐Server
Native Mobile

Apps
And Window
Manager VM Controller

VM0

Hypervisor

VLAN

Mobile Device OS

Figure 1: Architecture diagram

2 Design Overview

Our architecture has two main components: the virtu-
alization framework, and the integration front-end. The
virtualization framework contains a container-ready kernel
as well as each of the spawned containers (see Figure
1). A container could contain one or more applications.
Our initial design goals were to explore virtualization
of x86-based operating systems as well as ARM based
systems. However, our results 6 show that these solutions
will be far too slow and hence we choose to use OS-level
virtualization techniques.

The other component is the integration front-end. This
contains a light X-server that has been integrated into the
host OS, and also contains the container controller. The
controller runs inside the host OS. The controller will
be the user interface that controls launching, switching,
suspending, resuming, migrating the containers, as well as
ensuring the X-server is running properly.

A shared X-server removes rendering overhead from
each container and reduces the complexity in composing
the UI. We choose to share the rendering state between
third-party applications for performance reasons and
simplicity of design, but ensure isolation from native
applications.

In MoZyg, the virtualization framework is designed
to be device independent. The integration front-end
will have to be ported for each new device we support,
but its implementation is relatively simple. Our first
implementation focuses on one particular device (Palm
Pre) and OS (WebOS).

In summary, we leverage the existing linux containers
architecture to build a secure, usable and portable frame-
work for mobile device virtualization. Our contributions
are focused on providing the ability for secure execution

of applications while also providing integration to the mo-
bile device. Our proposed security model is an effective
method to isolate applications and we find that our design
ideas are similar to other recent efforts [27] in isolating un-
trusted code.

3 Design

3.1 Secure Isolation

The two primary goals of our design are: to provide
isolation of selected applications on mobile phones; to
build a usable solution which can be integrated seamlessly
into the host operating system of the smartphone. To
achieve these goals we either need a type-II hypervisor
which can run within the host operating system or employ
OS-level virtualization techniques like containers. Unlike
conventional virtualization, containers have almost no
overhead as they do not run the entire software stack of
the guest operating system. On the other hand, because
the virtualization is facilitated by the operating system,
other OSes or architectures cannot be used within a
container. In our design, we propose to use operating
system level virtualization techniques of which Linux
Containers and OpenVZ [11] are popular implementations.

3.2 Linux Containers

Linux Containers (LXC) implement OS-level virtualiza-
tion techniques in order to run a number of isolated virtual
environments on a single host. LXC differs from conven-
tional virtualization techniques, which generally require
the installation of guest OSes. The isolated virtual environ-
ments, or containers, are built upon other Linux security
mechanisms [33]. We list the different resources isolated
using containers and the techniques used for them below.

2

Figure 2: Linux Container Architecture

3.3 Host Identification

On Linux machines, the identity of a system is usually es-
tablished through the command ‘uname’. This command
reads information stored in the structure ‘utsname’. The
structure includes the name of the operating system in use
and the current version of the operating system. The struc-
ture also contains the hostname of the machine and this
is used to identify the machine in network communica-
tions. Linux Containers implement a per-process utsname
namespace and this enables each container to have a dif-
ferent hostname.

3.4 Process Identifiers

Process identifiers (PIDs) are isolated using PID names-
paces such that with respect to each container the set of
PIDs appears like a standalone machine. This also allows
two processes to have the same PID in different containers.
Processes can be launched in a new PID namespace using
the clone or the unshare system-calls. This is an impor-
tant feature for enabling migration of containers between
hosts as the PID values can be the same at the source and
destination. Also, PID namespaces are hierarchical; tasks
in the original namespace can see the PIDs of tasks in the
new namespace but not vice-versa.

3.5 Inter-Process Communications

Inter-Process Communication (IPC) between processes
uses shared objects like shared memory segments, message
queues etc. To create isolated environments, it is neces-
sary that processes from one container cannot share data
or communicate with other containers. This is achieved by
introducing IPC namespaces which creates separate set of
IPC objects for each container.

3.6 User Namespaces

User namespaces supplies additional UID tables in order to
allow a UID to be namespace specific. With user names-
paces, different users can be associated with the same UID
across different processes.

3.7 Network Devices

The network namespaces assign a private set of network
resources, including IP addresses, routes, sockets to any
number of processes. This allows for shared names among
different namespaces and isolation between those names-
paces. This provides substantial improvements in security
and network resource management. Network namespaces
are implemented using virtual ethernet devices and con-
tainers can bind to the same ports without interfering with
each other. This is a useful feature as, for example, we
could have two webservers listen on port 80 in different
containers.

3.8 Readonly-bind mounts

Bind mounts provide the ability to remount part of a file
hierarchy at a different location while it is still available at
the original location. This allows for read-only accesses
to a filesystem mounted read-write. It guarantees that one
process can read and write to the filesystem, while others
can only read from it, regardless of their privileges.

3.8.1 Copy-on-Write filesystems

One of the techniques used to prevent duplication of
system directories such as /bin, /lib across containers is to
mount them as read-only bind mounts from native system
into a container. However this means that processes
running within containers would be restricted and not able
to perform tasks like installing new binaries into /bin. In
order to enable each container to make modifications to
the system directories and avoid making multiple copies,
we use Unionfs [34] a file-level copy-on-write filesystem.

Unionfs is a file system which aims to maintain
UNIX semantics while providing advanced namespace-
unification capabilities. It allows read-only and read-write
branches to be inserted into the same tree and provides
support for snapshots. Unionfs is often used in scenarios
where a base OS image is provided on a read-only CD-
ROM and any changes made the user are stored in a sep-
arate read-write directory. Our use-case is similar as the
phone’s native OS image is mounted read-only and any
changes made by each container is stored in its own sepa-
rate read-writeable directory.

3

3.9 Other features

In addition to the above mentioned isolation features, the
Linux Container project adds support for Control Groups
which can be used to limit the resources used by a con-
tainer. Additionally, capability bounds can be used to re-
strict the privileges of a container and these features help
ensure that the resources in a machine can be isolated and
fairly shared between different containers.

4 Implementation
We implement MoZyg on Palm Pre which run the WebOS
operating system based on Linux kernel version 2.6.24.

4.1 LXC and module compatibility

While experimenting with new kernels on WebOS devices,
we encountered some issues that required work arounds.
Like many mobile devices the Palm Pre ships with a
number of binary modules for which the source code is
unavailable. For example, the wifi drivers “sd8xxx.ko”
and “uap8xxx.ko” that ship with the device are not
open-source and so we only have access to the final
binary module. This is not uncommon for linux drivers,
but presents us with two issues, both having to do with
maintaining the kernel application binary interface (ABI).

The first issue was regarding the ’MODVERSIONS’
config option in the kernel [6]. This config option helps
identify symbols by appending a CRC of their contents to
the symbol name. This was an issue because our changes
slightly modified the definitions of some symbols, and
this resulted in mismatched version information. Our
solution was to build the kernel without support for this,
but this results in lesser safety guarantees when loading
kernel modules. This is not a security concern since
loading modules is a privileged operation anyway, but is
undesirable as the safety checks help prevent the user from
loading incompatible modules.

The second issue was that the ABI of our modified
kernel needed to match that of the stock kernel, thus
restricting the kind of changes we could make in the
kernel. The Palm Pre ships with a modified version of
linux 2.6.24 [12], but full support for LXC was not merged
into the linux mainline until 2.6.26 [7]. In 2.6.24 there
is partial LXC support, and we had to backport some of
the other components. However we were unable to get
full LXC support since some features (such as network
namespaces) rely on significant changes in the kernel
architecture. However, this is not a fault in our design
and a device manufacturer most likely would not be faced
with this issue, being in the position to acquire or build the

related modules for the kernel version they desired.

4.2 X-server
The X-server serves as the graphical framework that
integrates the applications into the host environment. As
part of our efforts to bring X11 to the phones, we had to
make a few decisions that are detailed below.

4.2.1 DDX

The X-server architecture contains multiple Device De-
pendent X (DDX) implementations. The most used one is
‘xfree86’, but there are others, such as ‘kdrive’ [18]. We
chose to use kdrive because of the Xsdl functionality it
contains, which allows one to run X-server using SDL as
a backend. Unfortunately Xsdl is so out of date that it was
recently removed from the X-server project altogether due
to being broken and unmaintained.

From X-server version control: “if anyone uses this in
production, a big scary monster will eat them” [20]. The
unfortunate result of this was much work spent fixing Xsdl
and bringing it up to date, in order to work with the rest of
X-server. Fixes included interactions with the X-server, as
well as fixing the rendering code and the input handling.

4.2.2 SDL and GLES

As described above, the Xsdl kdrive code we started with
uses Simple DirectMedia Layer (SDL) [14] for input and
rendering. Once we had achieved this functionality, we no-
ticed the display lagged when doing even basic things like
moving the cursor. Previous experience working with SDL
on this device suggested that using GLESv2 [10] and cus-
tom shaders would improve a task even as simple as blit-
ting (graphical copy), so we ported the rendering bits to use
GLESv2. We provide numbers for the resulting increase in
performance and discussion in Section 5.2.

4.2.3 Devices that do not support SDL

Although the Palm Pre has support for SDL, many
devices do not, and that is something we have taken
into consideration. The kdrive structure can be made
rather portable: at its heart it just needs something
that can render a pixelbufer, and feed it input (either
event driven or by polling). This means that we could
potentially support Android devices through Java Native
Interface (JNI) [5], passing the buffer to a java applica-
tion to blit, which gathers input and feeds it to the X-server.

4

4.2.4 Keyboard

Keyboard support is very important when using applica-
tions. However it was a stumbling block for us for two
main reasons: 1) mapping SDL to something the X-server
can use 2) adding support for keys and features that are
not on the original device.

It is common for keyboards, particularly on phones,
to have each key have multiple uses when pressed with
a special modifier. As an example, on the Pre, ‘orange’
plus ‘q’ is the ‘/’ key. This presented a problem because
this means capturing the modifier requires creating a
state machine to process the input as opposed to a simple
lookup table. We used X-Keyboard-Config (xkb) for this.

The second issue is that many keys that are required for
doing something such as using ‘xterm’ simply do not exist
on most phones. Examples of such characters include
the pipe ‘|’ character, ‘>’, ‘<’, arrow keys. We currently
support many such keys on the Palm Pre through more
customizations to the xkb layout and hope to support other
devices.

4.2.5 Future: Integrating even more

A primary goal of our project is to cleanly integrate into
the host X-server. While our current implementation
is a great step and does integrate as a window in the
existing windowing system for the device, there is an
issue. Presently the X-server will render everything into
one window (see Figure 3), which requires a window
manager to manage the windows. This is bad both because
it is hard to use but also because it is a hard break from the
goal of integrating with the parent window manager–now
the user has to think about it as two separate systems.

One solution to this is to take advantage of the work
done on rootless X-server [13]. “The generic rootless layer
allows an X-server to be implemented on top of another
window server in a cooperative manner. This allows
the X11 windows and native windows of the underlying
window server to coexist on the same screen. The layer is
called “rootless” because the root window of the X-server
is generally not drawn. Instead, each top-level child of
the root window is represented as a separate on-screen
window by the underlying window server” [13].

Another idea is to take advantage of standard X-server
notification events [19] and hook into mobile device
notification systems, which both WebOS and Android
support.

Figure 3: X-server running icem and xchat

5 Evaluation

Benchmark Xsdl Xsdl-gles %Speedup
oddtilerect100 9950 11500 15.57%

scroll100 6680 7700 15.26%

copy100 2940 3440 17.01%

rect100 15700 18900 20.38%

fcircle100 8130 9940 22.26%

ftext 481000 556000 11.43%

Table 1: X server rendering with x11perf

5.1 Testing methodology
We perform our experiments on the Palm Pre which has
256MB RAM and runs on a ARM Cortex-A8 processor.
All numbers we report were run at least 3 times and aver-
aged. Unless explicitly mentioned otherwise, the variation
was nominal.

5.2 X-server numbers
An important part of our system is the X server used to
visualize and interact with the applications. While our cur-
rent design is somewhat limited in that it has too many lay-
ers of abstractions (using SDL as the backend), we have
taken efforts to make the server run faster, which resulted
in a much better user experience. The biggest perfor-
mance improvement was moving from basic SDL to SDL-
GLESv2 which improved the “feel” of X and the appli-
cations inside of it noticeably. To try to capture this speed
improvement we ran x11perf, which helps quantify the per-
formance improvements. As shown in Table 1, there was
noticeable improvements in a number of tests. These tests
we run from a Debian chroot, using localhost communi-
cation (not domain sockets) with the server, on the Palm

5

Pre. The tests were arbitrarily selected, with an attempt
at finding representative ones. These numbers should only
be taken as illustrating the general performance improve-
ments, not as an accurate measure of what real applications
will be like.

 0

 200

 400

 600

 800

 1,000

 1,200

 1,400

gcc prime unzip

T
im

e
in

 s
ec

o
n
d
s

Stock−Kernel
Modified−Kernel
Inside−Container

Figure 4: Running time comparison

5.3 LXC Performance numbers

In this section, we measure the overhead of our modifica-
tions to the kernel and the overhead due to running pro-
cesses inside a container. Figure 4 plots the running time
of the following applications:

• Compiling apache server version 2.2.15

• Finding prime numbers between 0 and 500,000

• Unzipping a 206.9MB file.

From the figure, we can see that the overhead is approxi-
mately within 5%-10% and that running a process within a
container does not significantly increase the running time.

 0

 20

 40

 60

 80

 100

Quake−TimeDemo

S
ec

o
n

d
s

Stock−Kernel
Modified−Kernel
Inside−Container
Inside−Container−No−IPC−Namespace

Figure 5: Execution Time for the Quake time-demo

5.4 Quake Time-Demo

To measure the overhead of communicating from the con-
tainer to an X-server running natively, we run the Quake
timedemo. The quake binaries were obtained from a Palm
Pre port of the libsdl.org implementation and the com-
mand used to run the experiments was ‘quake +timedemo
demo2’. Figure 5 presents the running time of the demo
in different scenarios. From the graph, we can see that the
running time is similar for the stock kernel and the mod-
ified kernel. When the experiment is run from within the
container, we observe that the running time increases by
about 60%. We attribute this to the fact that the containers
are configured to create a new IPC namespace and hence
the application communicates with the X-Server through
the loopback interface. When the containers are launched
without IPC namespaces, we find that the performance is
similar to that of the stock kernel.

5.5 LMbench

Our earlier experiments showed that there was no
significant increase in the end-to-end running time of
applications running inside a container. We further run
micro-benchmarks on the system in order to determine
if there is any overhead pertaining to process creation,
context switching, or creating files.

LMbench contains a suite of simple, portable bench-
marks and is useful for comparing the performance of
various UNIX systems. It includes a variety of bandwidth
benchmarks, of which the most popular are: cached
file reads, memory operations (copy, read, and write),
pipe, and TCP. Additionally, it supports a wide variety
of latency benchmarks, including: context switching,
network connection establishment (pipe, TCP, UDP,
RPC), file system operations (creates and deletes), process
creation, handling of signals, system call overhead, and
memory read latencies. LMbench also supports a variety
of multiprocessor tests and includes large databases of
results to compare one’s results to [29]. LMbench3 is the
most mature and commonly used benchmark among the
LMbench family. It runs a wide variety of tests, ranging
from intensive latency testing of cache misses to extensive
context switching testing. LMbench has been heavily used
in industry as well as academia [8].

Figures 6 and 7 present results from running LMbench3
on a modified kernel and from within a container, normal-
ized to the time taken on a stock kernel. From the results,
we can see that the overhead for system calls and for pro-
cess creation are negligible compared to the stock kernel.
We do not attribute any reason to read and write calls being
faster in the modified kernel and believe this to be due to
external noise.

6

 0.00
 0.20
 0.40
 0.60
 0.80
 1.00
 1.20
 1.40
 1.60
 1.80

syscall read write open/closefork+exit fork+exec fork+sh

Stock−Kernel
Modified−Kernel
Inside−Container

Figure 6: Normalized results from LMbench

6 Discussion
A large component of MoZyg is the use of virtualization
to achieve our security requirements. Unfortunately, the
ARM architecture is not directly virtualizable as there are
privileged instructions which when executed by the guest
operating system, do not trap to the host kernel. There are
many existing techniques like dynamic binary translation,
trap-and-emulate using hardware extensions, translate to
trap, and paravirtualization which have been used in ex-
isting virtualization solutions. We discuss some of these
solutions below and why we believe containers are more
suitable for smartphones.

6.1 QEMU on ARM
QEMU [24] is one of the more recent, popular and open
source virtual machine monitors that can be used to run
operating systems built for different architectures to run on
different machines. QEMU relies on dynamic binary trans-
lation and has been ported to run on multiple platforms
like ARM, PowerPC, i386 etc. Our first implementation
used QEMU and attempts to address the initial design goal
of evaluating the overhead of dynamic binary translation
on a smartphone running an ARM processor. However,
we found that the overhead due to dynamic binary transla-
tion is quite large without hardware assistance and explore
other solutions for providing isolation. We present results
from our experiments later in Section 6.4.

6.2 KVM
The Kernel Virtual Machine Monitor (KVM) is a virtual-
ization technique in which the Linux kernel plays the role
of a hypervisor. In traditional virtualization tools like Xen
[23], a hypervisor manages the scheduling, memory man-
agement and driver support for the different guest operat-

ing systems. Since the Linux kernel already performs most
of these tasks for the host operating system, it is efficient
to re-use this functionality for the guest operating systems
too. KVM consists of a kernel module, which introduces a
guest mode, page tables and handles privileged instructions
through a ‘trap-and-emulate’ scheme. On the x86 architec-
ture KVM uses hardware virtualization extensions like the
Intel VT or AMD-V for the same. The ARM architecture
is not strictly virtualizable as there are privileged instruc-
tions which do not trap to the kernel and therefore a simple
‘trap-and-emulate’ approach cannot be used. Hence more
complex techniques like dynamic binary translation, trans-
lation to add software interrupts or paravirtualization are
required for porting KVM to ARM. There have been some
initial attempts to port KVM to ARM [21] but the high
performance overhead reported led us to explore other so-
lutions for isolation and security.

6.3 User Mode Linux

User Mode Linux (UML) is a virtualization technique
in which the guest operating systems run as user mode
processes inside the host. When compared to hypervisors
like VMWare ESX or Xen, UML offers a simpler solution
and is patched into the Linux kernel source tree. The first
version of User Mode Linux used ptrace to virtualize sys-
tem calls and modify and divert them into the user space
kernel for execution. Later versions of UML introduced
the Separate Kernel Address Space (SKAS) mode where
the UML kernel runs in a different address space from
its processes. This addresses security issues by making
the UML kernel inaccessible to the UML processes and
also provides a noticeable speedup. Also this technique is
only effective when the architecture of the guest operating
system is the same as the host and hence this fits the
design constraints of our problem. User Mode Linux was

7

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

 1.20

 1.40

0k−create 0k−delete 1k−create 1k−delete 4k−create 4k−delete 10k−create10k−delete

Stock−Kernel

Modified−Kernel

Inside−Container

Figure 7: Normalized results from File System create/delete benchmarks in LMbench

built originally on the i386 architecture and has since
been extended to the PowerPC and x86 64 architectures.
Technically it should be feasible to port UML to ARM
architecture.

Some downsides of using UML are that the amount of
overhead is relatively large for workloads which have a
number of interrupts and the project is not under active de-
velopment anymore.

6.4 Why not QEMU

Given the above results, the only system we were able
to evaluate as a solution was QEMU (since the other two
were unavailable for our platform). We evaluated the over-
head of virtualization with a QEMU-based implementa-
tions running various distributions of Linux on both the
Android and the Palm Pre, and the results as given in Ta-
ble 2. The most successful implementation used ARM on
ARM virtualization and a basic ARM kernel image pro-
vided along with QEMU. Unfortunately, even this imple-
mentation was far too slow, taking 52 seconds to boot on
the Pre and 154 seconds to boot on the Android. Addi-
tionally response times were high, often taking several sec-
onds to display text input. A Debian ARM Lenny image
took over 15 minutes to boot on the Palm Pre and crashed
on the Android during boot. x86 emulation on ARM was
also tested, with a TTY-Linux image; however, this was
the slowest by far, taking over half an hour to boot on the
Palm Pre. On the Android, x86 guest mode QEMU would
not even run. Overall these experiments suggest that bi-
nary translation is not usable and so we explored different
virtualization techniques.

7 Related Work

Currently, there are many solutions available for virtual-
ization on desktop environments. VMware is a popular
closed source solution which implements a variety of
virtualization techniques and is used in both industry and
academia. KVM [31], QEMU [24], and XEN [23] are
all open source solutions, implemented using a variety
of virtualization techniques. These solutions cannot be
directly used in mobile environments for performance and
usability reasons.

Recently there has been a surge of research in the area
of mobile virtualization. One such solution is MobiVMM
[35], which prioritizes performance and security at the
cost of usability and portability. Their work has several
innovations, using ARM-specific hardware to assist in
virtualization. However, their numbers demonstrate a not-
icable overhead above native execution and demonstrate
only the latency overhead of their VMs, not the startup
times or the overheads imposed.

There have been efforts to port Xen to the ARM hard-
ware [23]. It supports many operations, including secure
booting and storage, access controls, booting of multiple
OSes, and static memory partitioning. Unfortunately,
the project is still very immature and many Xen tools
and features are absent and newer versions of ARM are
unsupported. Additionally, it seems little to no work has
been done since 2008.

Work has been done to port KVM to ARM [21], focus-
ing on performance and functionality. The paper discusses
ARM virtualization and covers how it can use dynamic

8

Palm Pre Cortex-A8 256MB RAM Android ARM 1136-JS 128MB RAM
Basic ARM kernel 52 154

Debian ARM Lenny 1186 Crashes during boot
TTY-Linux-i486 > 2000 Unable to get x86 guest mode qemu to run on arm

Table 2: Virtualization Results: Kernel Boot time in seconds in QEMU

binary translation, translate to trap, and basic block
breakpoints to overcome the unvirtualizable hardware of
an ARM processor. They discuss the (significant) portions
of KVM, which are hardware (x86) specific, and will
need to be modified to support ARM processors. While
promising, the project still only supports a small subset of
ARM processors and the project as a whole is still quite
immature.

VMware’s MVP project [32] introduces a very thin
Type I hypervisor with an emphasis on usability, and
security. However their implementation does not integrate
with the host OS, but rather replaces and contains it,
with the intention of running multiple OSes. The goal
would be able to run a work OS side by side with a
personal OS, isolating secure data from personal data
and vice-versa. While this is useful, it is tangential to
our work. Additionally, MVP is still under heavy devel-
opment, and release has been bumped back to at least 2012.

Open Kernel Lab’s OKL4 [28] is another implemen-
tation of a thin Type I hypervisor and is very similar
to MVP. OKL4 has a very small memory footprint and
adds minimal overhead to execution times. It is built
upon a lightweight L4 microkernel, and rather than for
running multiple OSes, it is designed to run under existing
phone and embedded OSes to provide additional isolation,
security, and information flow control.

There also is ARM’s TrustZone [22] which is aimed at
creating a secure “TrustZone”, primarily for use in DRM,
bank transactions and other similar setups. The goal is
to protect a specialized app from the rest of the system
(and protect, for example, secrets and keys from leaking
out of this zone). We aim to to do the opposite: we trust
the host OS and are protecting it, secure data, and other
applications from the given guest applications.

8 Future Work
MoZyg already makes good progress towards making mo-
bile devices secure, and bringing desktop applications into
that secure context. However, we have a few limitations
that we hope to address in future work which we describe
below.

8.1 Live Migration
Since we already have the applications running in virtu-
alized containers, an exciting next step would be to sup-
port live migration. Linux Containers already supports
the pausing and resuming of containers, and future would
could build upon this to allow live migration of applica-
tions. Given our implementation choice to use the fairly
universal X11, one could use such live migration to move
applications to/from desktops or other phones. There are of
course many implementation details to make this practical,
but we believe this could be a useful and exciting direction
to take our work.

8.2 Additional Containers Support
As the Palm Pre’s stock kernel version is 2.6.24, most of
the Linux containers functionality had to be back ported.
Unfortunately, a few of the components (such as network
namespaces) weren’t practical to backport beacuse they
rely on important architectural changes between 2.6.24 and
2.6.26. In future work we could finish backporting these
remaining components, or port Palm’s kernel changes to
the 2.6.26 or later kernel to get full LXC support.

8.3 LXC Design
Even after full LXC support, a number of important deci-
sions can explored to see their effect on performance, and
evaluate their effectiveness regarding security. In Section
5.4 we demonstrated the effects of enabling or disabling
IPC namespaces had on a benchmark that used X-server
which ran outside the container. We ran it outside to en-
force the explicit communication channels to be over the
explicit X-server protocol, but a decision could be made
to trade performance for that security enhancement. Other
such potential trade-offs include the network topology of
the containers and what resources make sense to expose to
each container.

9 Conclusion
Today’s smartphones can be insecure, and often attempt to
curb that by limiting the manner of applications that can be
executed. We built and evaluated MoZyg to address both
these issues, providing a framework to allow the execution
of desktop linux applications on mobile devices, as well

9

as providing a safe execution environment for both the
new apps and any native application the device wants to
run. Our evaluation shows that MoZyg does not sacrifice
performance while achieving this, and we demonstrate
our success in bringing X-server applications to mobile
devices. Most importantly, MoZyg was built to add to
the existing device experience, not alter or supplant it,
making it suitable and desirable to extend to many mobile
platforms.

Finally all of our work (source, modifications, build
environments, packaging) are available at the following
URL: http://wdtz.org/cs523.

References
[1] 16 percent of workloads are running Virtual

Machines. http://www.gartner.com/it/
page.jsp?id=1211813.

[2] Android Security and Permissions. http:
//developer.android.com/guide/
topics/security/security.html.

[3] Cyber-criminals target mobile banking. http:
//www.v3.co.uk/vnunet/news/2173161/
cyber-criminals-target-mobile.

[4] iPhone Privacy. http://seriot.
ch/resources/talks_papers/
iPhonePrivacy.pdf.

[5] Java Native Interface. http://java.sun.com/
j2se/1.4.2/docs/guide/jni/index.
html.

[6] Kernel config options. http://www.kernel.
org/doc/Documentation/kbuild/
kconfig-language.txt.

[7] Linux Container Components. http://lxc.
sourceforge.net/.

[8] LMbench. http://www.bitmover.com/
lmbench/why_lmbench.html.

[9] Mobile Phones, The Next Frontier. http:
//blogs.vmware.com/console/2009/08/
mobile-phones-the-next-frontier.
html.

[10] Open GL Embeded Systems. http://www.
khronos.org/opengles/2_X/.

[11] OpenVZ. http://wiki.openvz.org/Main_
Page.

[12] Palm Pre Open Source Packages. http:
//opensource.palm.com/1.4.1.1/
index.html.

[13] Rootless X. http://cgit.freedesktop.
org/xorg/xserver/tree/miext/
rootless/README.txt.

[14] Simple DirectMedia Layer. http://www.
libsdl.org/.

[15] Vulnerability Summary for CVE-2009-0475.
http://web.nvd.nist.gov/view/vuln/
detail?vulnId=CVE-2009-0475.

[16] Vulnerability Summary for CVE-2009-2204.
http://web.nvd.nist.gov/view/vuln/
detail?vulnId=CVE-2009-2204.

[17] Vulnerability Summary for CVE-2009-2692.
http://web.nvd.nist.gov/view/vuln/
detail?vulnId=CVE-2009-2692.

[18] X Glossary. http://www.x.org/wiki/
Development/Documentation/Glossary.

[19] X Notifications. http://www.
galago-project.org/specs/
notification/0.9/index.html.

[20] X Version Control. http:
//cgit.freedesktop.org/
xorg/xserver/commit/?id=
52bc6d944946e66ea2cc685feaeea40bb496ea83.

[21] D. A. Andreas Nilsson, Christoffer Dall. An-
droid Virtualization. http://www.chazy.dk/
android-report.pdf, 2009.

[22] ARM Ltd. ARM - TrustZone. http:
//www.arm.com/products/processors/
technologies/trustzone.php.

[23] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen
and the art of virtualization, 2003.

[24] F. Bellard. QEMU, a fast and portable dynamic trans-
lator. In ATEC ’05: Proceedings of the annual con-
ference on USENIX Annual Technical Conference,
pages 41–41, Berkeley, CA, USA, 2005. USENIX
Association.

[25] A. Bose and K. Shin. On Mobile Viruses Exploiting
Messaging and Bluetooth Services. Securecomm and
Workshops, 2006, pages 1–10, 2006.

[26] L. Cox and P. Chen. Pocket Hypervisors: Opportu-
nities and Challenges. In Eighth IEEE Workshop on
Mobile Computing Systems and Applications, 2007.
HotMobile 2007, pages 46–50, 2007.

10

[27] C. Grier, S. Tang, and S. King. Secure web browsing
with the OP web browser. In Proceedings of the 2008
IEEE Symposium on Securiy and Privacy, 2008.

[28] O. K. Labs. OKL4 Microvisor. http:
//www.ok-labs.com/products/
okl4-microvisor.

[29] L. McVoy and C. Staelin. LMbench: Portable tools
for performance analysis. http://lmbench.
sourceforge.net/lmbench-usenix.pdf,
1996.

[30] Pandora Research. Vodafone distributes Mariposa
botnet. http://research.pandasecurity.
com/vodafone-distributes-mariposa.

[31] Qumranet. Kernel-Based Virtual Machine. [Online],
2009. Available: http://linux-kvm.org.

[32] VMware. VMware MVP (Mobile Virtualiza-
tion Platform). http://www.vmware.com/
products/mobile.

[33] C. Wright, C. Cowan, J. Morris, S. Smalley, and
G. Kroah-Hartman. Linux Security Modules:
General Security Support for the Linux Kernel.
http://www.usenix.org/event/sec02/
full_papers/wright/wright_html/
index.html, 2002.

[34] C. P. Wright, J. Dave, P. Gupta, H. Krishnan, D. P.
Quigley, E. Zadok, and M. N. Zubair. Versatility
and unix semantics in namespace unification. ACM
Transactions on Storage (TOS), 2(1):1–32, February
2006.

[35] S. Yoo, Y. Liu, C.-H. Hong, C. Yoo, and Y. Zhang.
MobiVMM: a virtual machine monitor for mobile
phones. In MobiVirt ’08: Proceedings of the First
Workshop on Virtualization in Mobile Computing,
pages 1–5, New York, NY, USA, 2008. ACM.

11

