Characterizing Data Structures for Volatile Forensics

Ellick Chan, Shivaram Venkataraman, and Nadia Tkhach, Kevin Larson
Department of Computer Science
University of Illinois, Urbana-Champaign
{emchan,venkata4,ntkach2,klarson5}@illinois.edu

Alejandro Gutierrez
Graduate School of Library and Information Science
University of Illinois, Urbana-Champaign
agutier3@illinois.edu

Roy H. Campbell
Department of Computer Science
University of Illinois, Urbana-Champaign
rhc@illinois.edu

Abstract—Volatile memory forensic tools can extract valuable evidence from latent data structures present in memory dumps. However, current techniques are generally limited by a lack of understanding of the underlying data without the use of expert knowledge. In this paper, we characterize the nature of such evidence by using deep analysis techniques to better understand the life-cycle and recoverability of latent program data in memory.

We have developed Cafegrind, a tool that can systematically build an object map and track the use of data structures as a program is running. Statistics collected by our tool can show which data structures are the most numerous, which structures are the most frequently accessed and provide summary statistics to guide forensic analysts in the evidence gathering process. As programs grow increasingly complex and numerous, the ability to pinpoint specific evidence in memory dumps will be increasingly useful. Cafegrind has been tested on a number of real-world applications and we have shown that it can successfully map up to 96% of heap accesses.

I. INTRODUCTION

Traditional forensic tools gather evidence from persistent storage devices such as hard drives. In contrast, newer forensic tools also collect ephemeral evidence from the memory of a running computer. Tools such as Volatility [24] deconstruct and decipher the raw memory dumps and search for evidence of interest. While these tools can find evidence such as the process list, open network sockets and open files, which are directly related to the running system, they are often unable to provide deep semantic insight into the internal operations of the running programs. Without the use of time-consuming manual analysis or specifically developed tools, the forensic investigator cannot temporarily access or decipher all of the relevant evidence.

Current techniques to extract evidence from these memory dumps include the use of debuggers, fast file carving techniques [15] and raw pattern recognition tools such as grep, strings. Entropy analysis tools are also used to identify encrypted data. Some tools such as KOP [6] can provide an object map of kernel objects, but often times they require expert knowledge and only work on static memory dumps.

In this paper, we attempt to characterize the nature of forensic data empirically by using a type tracking system. We have developed a tool, Cafegrind, which monitors a running program to track the usage of data structures. By tracing the operations of dynamic memory allocations, Cafegrind infers the types of data structures created and accessed in a program. Furthermore, Cafegrind generates information that can be analyzed off-line to infer additional properties about the life-cycle of data in a program.

Our measurements include:
1) How long data structures last in memory before they are freed or clobbered
2) Which data structure types are the most frequently accessed
3) Which functions allocate and access which data types the most
4) Modification/write velocity of a data type

We have measured the data life-cycle of many real-world applications including web browsers and word processors. Our experiments show that Cafegrind can accurately map up to 96% of heap accesses and we present some case studies detailing our experiences. First, we present an analysis of how our measurements help characterize important quantities such as forensic blurriness [22], [9]. Furthermore, by observing the internal operations of programs such as web browsers, we test the effectiveness of privacy measures such as “private browsing mode” against core dump analysis and volatile memory forensics.

Our contributions include:
1) A method and apparatus to track objects present in the memory of a running program
2) A study of the emergent characteristics of data structures including the lifetime and access patterns
3) Metrics to help forensic analysts understand the fidelity of various data types collected from a memory dump

The rest of this paper is organized as follows: We discuss existing work in volatile memory forensics in Section II. The design of Cafegrind, the type inferencing technique used and implementation details are presented in Section III. We present details of our experiments in Section IV and discuss some of the implications of our work for volatile memory forensics in Section V.

II. RELATED WORK

Drepper [14] provides a fairly comprehensive description of the entire memory hierarchy, which extends from the design of the high-level memory allocator to the design of the underlying physical semiconductors. We highly recommend reading this work to better understand the technical issues...
regarding volatile memory forensics. Gutmann [16] explored memory remanence in semiconductors early on. Chow [11], [12] performed similar measurements of data lifetime in the context of whole system simulation. Our work differs in that we perform more precise type tracking as opposed to byte-level taint tracking.

From a forensics perspective, a number of tools can collect memory dumps including the built-in core dump facility present in many operating systems. In order to collect a full system dump, crash dumps can be triggered through special debug facilities [20]. Live dumping tools include the use of the standard Unix dd tool and a number of opensource/commercial equivalents. Once a memory dump or core dump is obtained, analysis tools can be used to extract evidence from them. If the target application is compiled with debug information, core dumps are fairly straightforward to analyze with standard debugging and development tools. If not, then more advanced techniques such as file carving [15] may help extract specific types of data out of the memory image. Full system memory dumps can be analyzed using tools such as Volatility [24], or mapped by using tools such as KOP [6]. Amari [8] provides a good overview of existing volatile memory forensic techniques.

The subject of data persistence has been studied in the context of recovering data from non-zeroed operating system pages, page files, memory object caches [17], [23] and non-zeroed memory from other security domains. Likewise, Halderman explored memory remanence for encryption keys [17] and Chan explored the security implications of preserving memory contents [8].

In contrast to static approaches, Lin [19] explores live techniques to extract and reverse data structures from execution. Cozzie [13] takes a different approach by applying Bayesian machine learning to classify unknown data structures. Furthermore Chen [10] and Burzstein [5] have explored how private browsing modes work and how residue objects may limit their effectiveness.

III. DESIGN

A. Valgrind

Cafegrind is designed as an extension to Valgrind [21], a suite of tools for debugging and profiling. Common functionalities of Valgrind include memory leak detection, cache simulation and program analysis to detect concurrency bugs. Valgrind executes target programs by dynamically translating them into its internal VEX execution format. As a result, Valgrind is able to perform fine-grained instrumentation at the lowest levels of the machine’s architecture. Unlike similar emulation systems such as QEMU, Valgrind is also able to interpret higher-level debugging symbol information to support various functionalities such as memory leak detection. Cafegrind builds upon these intrinsic features to track the lifecycle of data and provides additional insight into specific data structures by performing automatic type inferencing.

B. The Life-cycle of Data

The life-cycle of data in a program is shown in Figure 1. First, memory is allocated by using a function such as malloc() or new and it is then initialized by a function such as memset(), C++ constructor or memory pool constructor. Once the base object is ready, its fields are populated with information and the data structure is accessed and modified as the program runs. Once the data structure is no longer needed, it is freed and its memory returns to a pool for reallocation. Throughout this process, memory locations can be overwritten by modification, initialization and reallocation. However, the process of relinquishing memory does not always clear the latent contents of the data structure. In many cases, data is only partially destroyed as reuse of a memory area does not always completely overwrite old data. This partial destruction process is one of the underlying principles behind volatile memory forensic analysis and is useful in uncovering freed data. Cafegrind uses empirical methods to track how much data can be recovered from memory dumps that contain both active and freed data.

C. Type Inferencing

Since C/C++ are not strongly typed languages, Cafegrind must infer the type of allocated memory areas to build its object map. To illustrate how this works, consider the following code snippet:

```
[1] struct datastructure * mydata;
[2] mydata = (struct datastructure *) malloc( sizeof( struct datastructure ) );
```

\[\text{Fig. 1. The lifecycle of data}\]
Finally, ambiguous types involving unions or generic arrays cannot currently be resolved using our framework. To solve this problem, we would need to develop a type agreement and type history system. For instance, a generic array may initially be recognized as a char* array at first, but then in a different context, the type resolution system may identify that various offsets in the array correspond to ethernet packets. The system should recognize and promote subtypes as necessary in order to maintain high fidelity type inferencing.

D. Methodology

In order to track the data life-cycle of a program and also build an object map by performing type inferences, Cafegrind instruments the following events while a program is running:
1) Memory allocation
2) Data structure read/write accesses
3) Memory deallocation

To support type inferencing, Cafegrind intercepts all memory allocation and deallocation requests. When an allocation is made, Cafegrind tracks the memory object returned by malloc() and the stack trace at the time of the allocation. Recall that malloc() does not return typed objects; objects are of the generic type void*. These allocations are stored in the object map, which is implemented as an efficient ordered set for fast lookup and retrieval. Cafegrind only discovers the type of a memory object when the object is loaded into a typed pointer object as described in Section III.C. This is enabled by intercepting store instructions to memory locations and Cafegrind can thus track the assembly level assignment of a pointer to the memory object to a stack location. If the pointer points to a tracked memory location, Cafegrind performs a lookup on the debug information associated with the executable to describe the type of the stack variable. This process queries the debug information present in loaded libraries and binaries in the DWARF3 format and helps identify the type of the stack object. Once the type of the stack object has been identified, it is then propagated to the dynamically allocated memory object and stored in the same ordered set.

In addition to performing type inferencing, Cafegrind also tracks accesses and modifications to the data structure. This allows analysis of the access patterns to be associated with a particular type. These accesses are tracked by instrumenting all memory loads and stores. In the previous code snippet, line 3 illustrates how Cafegrind tracks data accesses. When a memory address is accessed, Cafegrind checks its internal allocation database to see whether or not the access belongs to a tracked allocation. If so, Cafegrind identifies which allocation the access belongs to and resolves the member being accessed. These accesses are tracked and aggregated statistically to reveal how the underlying data types are being used. Furthermore, we also track which function call led to the data access and aggregate this information to find which data types a particular function accesses. Cafegrind once again uses efficient algorithms based on ordered sets to perform the lookup and updates quickly.
Cafegrind also maintains a set for allocations that have been freed by the application. This set is used to track when objects are overwritten in memory and helps determine the time at which data is destroyed. In addition to maintaining properties of data structures, we also collect their binary contents. This is useful for off-line analysis using utilities like strings and the contents are clustered by their type in separate files to enable easier processing.

By performing such monitoring, Cafegrind is able to better understand how data is created, accessed and destroyed. This can provide an empirical analysis on which data structures could be found and for how long they are expected to persist. For instance, a forensic analyst may find some interesting information in an HTML cache object, but this type of object may be transient and the data stored in it can change throughout a browsing session as the user visits certain websites. Cafegrind can provide an analysis of the longevity of such data.

IV. Evaluation

A. Experimental Setup

Our technique described in Section III relies on explicitly monitoring canonical variable accesses and assignments. Common compiler optimizations can store pointers in registers instead of allocating space on the stack. This process can affect Cafegrind’s type inferencing algorithm, thus Cafegrind only works on binaries and shared libraries that are compiled with debugging options enabled and optimization disabled. From a forensic standpoint, an investigator is unlikely to encounter a machine with such a configuration. However, the purpose of this paper is to study the ideal behavior of data structures and applying these alterations does not operationally affect the behavior of the applications we study except for imposing additional runtime overhead when the program is being instrumented.

Our experiments were run on a single Intel Core i7 920 CPU running at 2.67 GHz with 6GB of RAM running Gentoo Linux 1.12.14 on the 2.6.34-r12 kernel. All the applications and libraries were compiled with debugging enabled and optimization disabled. This configuration affords Cafegrind visibility into the inner workings of system applications and libraries. As a result, we can trace a complete execution chain of all the subsystems such as the KDE desktop environment if desired.

B. Basic Concepts

In this paper, we focus on web browsers because of their increasing popularity and importance. We study Firefox and Konqueror, two open source web browsers and measure the effectiveness of “private browsing mode” against core dump analysis. Further, we also look at which data structures could potentially leak private information and also study the similarities and differences between the two browsers.

For each object in an application, we track the following attributes:

1) Type - The type of an object
2) Object Size - The size of an object
3) Age - The length of time an allocation lasts before it is deallocated
4) FreedAge - The length of time a deallocated structure lasts before it is clobbered by a subsequent allocation
5) Reads - Number of reads performed
6) Writes - Number of writes performed
7) Allocation Size - Size of the allocation including slack

Our evaluation methodology cross-analyzes these attributes to find correlations which reveal patterns and relationships in the way that these structures are allocated, accessed and freed. We measured forensically interesting data structures in several ways. First, we apply well-known string identification algorithms to find ASCII strings in memory. This helps us identify web pages and XML documents as well as HTTP requests that are latent in memory. Secondly, we perform outlier analysis on the dataset to find objects that are large, frequently accessed, or have great longevity. Outlier analysis is useful to find data structures which have different properties based on configuration changes. Cafegrind thus produces a list of candidate types that the forensic analyst can inspect more closely to find evidence of interest. In this paper, we have taken the candidate list and applied our expertise to identify and measure the characteristics of interesting types of forensic evidence.

C. Coverage

The type inferencing coverage is measured by counting the number of load/store operations on dynamically allocated regions of memory for which Cafegrind has inferred the type. In terms of type inferencing coverage, Cafegrind performs remarkably well. As shown in Table I, we have seen upwards of 90% type inferencing accuracy for several real world applications. This behavior should be expected since the type information comes from debug information ingrained in the program itself. The coverage was also improved as the system that was used for evaluation contained shared libraries built with debug information. Additionally since we tracked load/store instructions from the program and its linked libraries, our type inferencing technique was able to get a clear insight into the creation and usage of data types. However we have not compared the accuracy of the inferred types with the ground truth due to the complexity of obtaining the ground truth for large applications and there are several factors that can affect the performance of the type inferencing system:

<table>
<thead>
<tr>
<th>Application</th>
<th>Store Coverage</th>
<th>Load Coverage</th>
<th>Overall Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firefox</td>
<td>70.48 %</td>
<td>88.11 %</td>
<td>83.51 %</td>
</tr>
<tr>
<td>KWrite</td>
<td>85.8 %</td>
<td>94.27 %</td>
<td>92.66 %</td>
</tr>
<tr>
<td>Links</td>
<td>99.09 %</td>
<td>99.99 %</td>
<td>99.6 %</td>
</tr>
<tr>
<td>Tor</td>
<td>85.95 %</td>
<td>96.43 %</td>
<td>95.02 %</td>
</tr>
</tbody>
</table>

TABLE I

Coverage
1) Generic arrays of char* and similar types that are cast into specific types before access.
2) Variable length structures where the last element is a void* or char*.
3) Unions used in structures where the type is ambiguous.
4) Nested types with unions. Cafegrind currently doesn’t handle nested type agreement.
5) The use of custom allocators which return void*. Currently, Cafegrind isn’t able to follow multiple levels of type propagation.

Nonetheless, from experience and cross-validation we find that Cafegrind performs very well in real-world scenarios. Certainly, there are cases where programs use certain practices that may be challenging for type inferencing systems to handle. As we have seen with Firefox there are large code-bases that use pointer wrappers, templating and other constructs which can obscure the true type of an object. This remains a challenge for even the best type inferencing systems. In the absence of compiler assistance, there are not many options to handle these cases. For example, KOP \cite{6} relies on additional compiler information to extract the type assignments.

D. Applications

Firefox

Firefox is a popular web browser that supports private browsing mode. When Firefox starts up, it allocates several singleton UI and bookkeeping structures. As the user opens web pages, Firefox creates a number of HTML parsers, XML parsers, UI widgets and graphical image renderers for PNG/JPG images present on a webpage. The purpose of our study is to measure how many of these elements are created when using the private browsing mode and are latent in memory for an extended period of time. This measurement provides a rough measure on how much forensic evidence is available during core dump analysis. We also identify which data structures contain sensitive information.

Figure \ref{fig:obj_age_hist} shows a histogram of the distribution of object ages. Many of the objects allocated by Firefox have a long lifespan. This is likely to be the case because Firefox uses a custom allocator and smart pointers.

Figure \ref{fig:freed_age} shows how long freed objects last in memory before they are ultimately reallocated and clobbered. There seem to be three distinct clusters representing long-term, medium-term and short-term reallocations. This behavior is reflective of how the memory allocator redistributes memory. Smaller allocations are more frequent and therefore, the longevity of their data is also shorter because these smaller memory pools are heavily used. Larger allocations tend to be more rare and thus latent data has a longer life expectancy in these pools. However, if the system is running low in memory, larger pools can be split and reallocated to service requests for smaller allocations.

These results confirm our observations about how Doug Lea’s malloc() allocator \cite{18} is implemented in GLIBC 2.x. This allocator tends to have the following properties (documented in the source code): small allocations are made from a pool of quickly recycled chunks, large allocations (\(\geq 512\) bytes) are made in FIFO order and very large allocations (\(\geq 128\) KB) are made using system memory facilities. Much of the evidence we found was stored in large ring buffers or cache structures which tend to be allocated in larger pools and since larger allocations have a longer life expectancy, we believe that volatile memory forensics can be used to extract useful information from applications.

We perform a conjoint measurement of Firefox to better characterize how private mode manages data structures. Since private mode cannot be used in isolation, we run a series of conjoint actions depicted in Figure \ref{fig:conj_actions} as an experiment meant to isolate the effects of private mode.

Figure \ref{fig:conj_actions} describes the methodology we used during our experiments. We denoted with \('[F,W]' the action of launching Firefox in Normal Mode and visiting a known webpage. We denoted with \('[F,P,W]' the action of launching Firefox in Normal mode, activating the Private mode option and then visiting

\begin{figure}[h]
\centering
\includegraphics[width=0.45\textwidth]{obj_age_hist.png}
\caption{Firefox: Object age histogram}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.45\textwidth]{freed_age.png}
\caption{Firefox: Freed object age vs size}
\end{figure}
the same webpage we visited in \([\text{F,W}]\). As part of another task, denoted by \([\text{F,N,W}]\), we proceeded to launch Firefox in Normal Mode, opening a tab and then visiting our test webpage. We also validated our experiments by doing three more tests involving enabling the Private Mode in between launching the Firefox program, opening a new tab and actually visiting the webpage, but results from these experiments did not have any significant differences from the ones presented in the paper. Another task we included was launching Konqueror and visiting the page we previously visited with Firefox. For all our tasks we collected in the background all the information using Cafegrind. Our results are shown in different sections of Figure 5. Figure 5a shows how Firefox in Normal mode accesses various data structures and how Private Mode differs by accessing different data structures. Figure 5b presents the differences between accessing Firefox in Normal Mode and Firefox New Tab. Initially we suspected that Firefox in Private mode accessed unique types of data structures, but when comparing Figure 5a against Figure 5b, we noticed there existed some overlap. Upon a deeper analysis we refined our list of unique data structure types that Firefox in Private Mode uses which we depict in Table 5a. By analyzing the Firefox source code, we were able to verify that private mode uses separate state storage objects for browser history and X11. We also noticed that there were some datastructures which were only used in either Firefox or Konqueror. By analyzing Cafegrind output we found these to be related to the fact that they use different HTML rendering engines.

Furthermore, we ran Cafegrind on Firefox and determine which data structures retain information from the private browsing mode. We launched Firefox, entered private browsing mode, visited a popular tech website and stopped private browsing mode. At this point, we enabled the dumping of accessed/freed memory structures with more than 40% ASCII characters and proceeded to close Firefox. In searching these dumps, we found a plethora of information left over from the private browsing session, some of which is shown below.

Private Browsing: Residual Data in Firefox:

1) GStringr, gconvinfo, steps, nsAttrValueBits, nsCAutoString, nsCOMPtrnsICContent, nsCOMPtrnsIURI, nsEntryHeader, pngstructdefjmpbuf - All contained the URL as well as a variety of data from the visited website.
2) Tokenz - Contained SQL statement intended to clean up private browsing mode.
3) nsXPTCVariant - Contained a large assortment of data, ranging from PNG files to URLs to various private browsing resources, such as cookies.
4) JSHashEntrynext - Contains a variety of URLs, many linked to javascript and XML files.
5) ScopedXPCOMStartupServiceManager - Cache contains a variety of information, including URLs and SQL statements.

Outside of private browsing mode, we found the following structures to be key to the operation of Firefox. The list is extensive, so we present an abbreviated list of the most important types here.

Interesting Structures Include:

1) GCGraphBuilder - Not surprisingly, the garbage collector’s data structure is the most frequently written object. It has to track other objects for garbage collection and has a long lifetime.
2) nsCOMPtr< nsICSSParser - This is an instance of a CSS parser. It has a huge number of writes. nsCOMPtr is a smart pointer that manages memory to prevent leaks and has a long lifetime.
3) XML_ParserStruct - Parses XML structures and has a relatively short lifetime.

E. Code Metrics

Cafegrind is over 2,100 lines of code and it builds upon the Valgrind framework which has over 87,000 lines of code. Adding tracing and instrumentation functionality in Cafegrind is relatively straightforward by using standard Valgrind functions.

F. Performance

We compared the performance of Cafegrind against the performance of the Valgrind tool itself in Table III. Valgrind in its purest form imposes a modest performance penalty because it does binary translation and intercepts function calls. Lackey
Fig. 5. Firefox and Konqueror analysis
Vo l a t i l e m e m o r y f o r e n s i c s i s s t i l l a n a s c e n t f i e l d i n m a n y
applications such as web browsers use many shared
libraries. Learning to recognize forensic evidence in one
instance of a library is sufficient, because the same techniques
can be equivalently applied to all other similar instances.
However, this level of sharing illustrates how complicated the
software stack can be. In the course of our analysis, we found
that some applications such as web browsers use many shared
libraries and in some cases such as Konqueror, the original
application binary simply launches an instance of a shared
web rendering framework called WebKit.

Furthermore, since libraries have strict function export inter-
faces and well-defined data structures for interaction, crossing
library boundaries can reveal a wealth of forensic information.
This is not surprising because these interfaces have been
used as type-revealing operations in type-sink systems [19].
Likewise, the use of these libraries often requires data type
conversion between different kinds of data structures and this
results in duplication of data. This duplication happens at the
data structure level where the structures may be shadowed in
different libraries or in buffers where libraries pass information
to each other. For instance, a web browser might use libxml to
parse an XML file and then use libqt to display it. An XML
file parsed in this workflow would appear in the private data
of both libraries. Additionally, data can be buffered when it is
being compressed or encrypted. The original buffer contains
a copy of the data as well as the compression/encryption
library’s temporary buffer. As a result, there are many copies
of same data present in memory and our analysis is just the
first step in shedding some light on the associations between
these structures.

Table II shows the performance of different tools when run
against different programs.

<table>
<thead>
<tr>
<th>Application</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firefox native</td>
<td>6 s</td>
</tr>
<tr>
<td>Firefox Cafegrind</td>
<td>3:30 m</td>
</tr>
<tr>
<td>Firefox Lackey</td>
<td>2:57 m</td>
</tr>
<tr>
<td>Firefox Memcheck</td>
<td>1:52 m</td>
</tr>
<tr>
<td>Konqueror</td>
<td>2 s</td>
</tr>
<tr>
<td>Konqueror Lackey</td>
<td>3:12 m</td>
</tr>
<tr>
<td>Konqueror Cafegrind</td>
<td>3:26 m</td>
</tr>
</tbody>
</table>

[21] is an example tool in Valgrind which traces memory
accesses in addition to other instrumentation. When Lackey
is used, the performance quickly degrades as each instruction
is individually executed with memory tracing support enabled.
Since Cafegrind uses facilities that are similar to what Lackey
does, its performance is similar to that of Lackey. Further per-
formance profiling showed that the additional functionalities
of typeinferencing and object tracking contribute around 29%
and 7% overhead respectively.

V. D I S C U S S I O N

Volatile memory forensics is still a nascent field in many
ways. Current techniques developed to extract evidence of
interest often rely on expert knowledge or some intuition about
the structure of evidence. Current approaches have explored
extracting ASCII data and data of high entropy. We believe that
these approaches can be complemented by the use of statistical
data to further identify these structures. Cafegrind is a step in
this direction because it helps to assess the practicality of data
extraction and automatically identify target types.

In the long term, we believe that the collection of programs
that need to be considered in a forensic investigation can be
quite large and better systematic approaches to forensics are
necessary to address the natural diversity in software systems.
In the process of doing so, it is absolutely necessary to estab-
lish a ground truth as a baseline to measure evidence extraction
against. Since the majority of popular applications are written
in a loosely-typed language, it becomes necessary to adopt
type-inferencing and type-discovery methods to effectively
capture an accurate object map.

Another trend that affects analysis is the use of modular
components in software. For instance, many applications em-
bed web browsers, movie players and use common encryption
libraries. Learning to recognize forensic evidence in one
instance of a library is sufficient, because the same techniques
can be equivalently applied to all other similar instances.
However, this level of sharing illustrates how complicated
the software stack can be. In the course of our analysis, we found
that some applications such as web browsers use many shared
libraries and in some cases such as Konqueror, the original
application binary simply launches an instance of a shared
web rendering framework called WebKit.

Looking forward, we expect that advances in leveraging
peripheral information from compilers and debugging informa-
tion will help in the identification process. Our work is
just one step to drive this process forward by identifying and
characterizing such data.

VI. C O N C L U S I O N

Forensic analysis of evidence gathered from volatile mem-
ory is a nascent but important field. Advances in algorithms
and methodologies supporting this extraction process seem to
be headed toward a better understanding of the semantics and
contents of this information. To help assess the practicality of
extracting evidence from these memory dumps, we attempt
to establish a baseline for the object map by using the algo-
rithms described in this paper. Although the initial results are
encouraging, much work still remains to make full evidence
extraction from volatile memory dumps a reality.

Several important challenges remain to be solved. First is
the problem of type classification given the binary contents
of an object. Cozzie [13] was a good step, but we found
that this problem is perhaps more challenging than it initially
appears. For instance, even though we are monitoring seven
attributes, unique identification of a type requires additional
information. On the flip side, these attributes may be able to
help guide a forensic analyst toward interesting evidence by
virtue of identifying the characteristics of relevant data.

This effect is especially evident with Tor where anonymized
network packets may be routed through client nodes. Any
forensic evidence collected from Tor should take into accou-
nt the source of the data with proper attribution. Further work
needs to be done on this attribution process.
Acknowledgements We would like to thank the anonymous reviewers for their valuable feedback. This research was supported by grants from DOE DE-DE00000977 under TCIPG (tcipg.org) and a Siebel Fellowship. The opinions expressed in this paper are those of the authors alone.

REFERENCES