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Abstract—Volatile memory forensic tools can extract valuable
evidence from latent data structures present in memory dumps.
However, current techniques are generally limited by a lack
of understanding of the underlying data without the use of
expert knowledge. In this paper, we characterize the nature
of such evidence by using deep analysis techniques to better
understand the life-cycle and recoverability of latent program
data in memory.

We have developed Cafegrind, a tool that can systematically
build an object map and track the use of data structures as a
program is running. Statistics collected by our tool can show
which data structures are the most numerous, which structures
are the most frequently accessed and provide summary statistics
to guide forensic analysts in the evidence gathering process. As
programs grow increasingly complex and numerous, the ability to
pinpoint specific evidence in memory dumps will be increasingly
helpful. Cafegrind has been tested on a number of real-world
applications and we have shown that it can successfully map up
to 96% of heap accesses.

I. INTRODUCTION

Traditional forensic tools gather evidence from persistent
storage devices such as hard drives. In contrast, newer forensic
tools also collect ephemeral evidence from the memory of a
running computer. Tools such as Volatility [24]] deconstruct
and decipher the raw memory dumps and search for evidence
of interest. While these tools can find evidence such as the
process list, open network sockets and open files, which are
directly related to the running system, they are often unable
to provide deep semantic insight into the internal operations
of the running programs. Without the use of time-consuming
manual analysis or specifically developed tools, the forensic
investigator cannot temporarily access or decipher all of the
relevant evidence.

Current techniques to extract evidence from these memory
dumps include the use of debuggers, fast file carving tech-
niques and raw pattern recognition tools such as grep,
strings. Entropy analysis tools are also used to identify
encrypted data. Some tools such as KOP [[6]] can provide an
object map of kernel objects, but often times they require
expert knowledge and only work on static memory dumps.

In this paper, we attempt to characterize the nature of
forensic data empirically by using a type tracking system. We
have developed a tool, Cafegrind!l, which monitors a running
program to track the usage of data structures. By tracing the
operations of dynamic memory allocations, Cafegrind infers
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the types of data structures created and accessed in a program.
Furthermore, Cafegrind generates information that can be
analyzed off-line to infer additional properties about the life-
cycle of data in a program.

Our measurements include:

1) How long data structures last in memory before they are
freed or clobbered

2) Which data structure types are the most frequently ac-
cessed

3) Which functions allocate and access which data types the
most

4) Modification/write velocity of a data type

We have measured the data life-cycle of many real-world
applications including web browsers and word processors.
Our experiments show that Cafegrind can accurately map up
to 96% of heap accesses and we present some case studies
detailing our experiences. First, we present an analysis of how
our measurements help characterize important quantities such
as forensic blurriness [22]], [9]. Furthermore, by observing the
internal operations of programs such as web browsers, we
test the effectiveness of privacy measures such as “private
browsing mode” against core dump analysis and volatile
memory forensics.

Our contributions include:

1) A method and apparatus to track objects present in the
memory of a running program

2) A study of the emergent characteristics of data structures
including the lifetime and access patterns

3) Metrics to help forensic analysts understand the fidelity
of various data types collected from a memory dump

The rest of this paper is organized as follows: We discuss
existing work in volatile memory forensics in Section Il The
design of Cafegrind, the type inferencing technique used and
implementation details are presented in Section [Tl We present
details of our experiments in Section [V] and discuss some of
the implications of our work for volatile memory forensics in
Section [VI

II. RELATED WORK

Drepper provides a fairly comprehensive description
of the entire memory hierarchy, which extends from the
design of the high-level memory allocator to the design of the
underlying physical semiconductors. We highly recommend
reading this work to better understand the technical issues



regarding volatile memory forensics. Gutmann [[16] explored
memory remanence in semiconductors early on. Chow [I1],
[12] performed similar measurements of data lifetime in the
context of whole system simulation. Our work differs in that
we perform more precise type tracking as opposed to byte-
level taint tracking.

From a forensics perspective, a number of tools can collect
memory dumps including the built-in core dump facility
present in many operating systems. In order to collect a full
system dump, crash dumps can be triggered through special
debug facilities [20]]. Live dumping tools include the use of the
standard Unix dd tool and a number of opensource/commercial
equivalents. Once a memory dump or core dump is obtained,
analysis tools can be used to extract evidence from them.
If the target application is compiled with debug information,
core dumps are fairly straightforward to analyze with standard
debugging and development tools. If not, then more advanced
techniques such as file carving [[13)] may help extract specific
types of data out of the memory image. Full system memory
dumps can be analyzed using tools such as Volatility [24],
or mapped by using tools such as KOP [6]. Amari [3]
provides a good overview of existing volatile memory forensic
techniques.

The subject of data persistence has been studied in the
context of recovering data from non-zeroed operating sys-
tem pages, page files, memory object caches [7], and
non-zeroed memory from other security domains. Likewise,
Halderman explored memory remanence for encryption keys
and Chan explored the security implications of preserving
memory contents [8].

In contrast to static approaches, Lin explores live tech-
niques to extract and reverse data structures from execution.
Cozzie takes a different approach by applying Bayesian
machine learning to classify unknown data structures.

Furthermore Chen and Burzstein [S]] have explored how
private browsing modes work and how residue objects may
limit their effectiveness.

IIT. DESIGN

A. Valgrind

Cafegrind is designed as an extension to Valgrind [21]], a
suite of tools for debugging and profiling. Common func-
tionalities of Valgrind include memory leak detection, cache
simulation and program analysis to detect concurrency bugs.
Valgrind executes target programs by dynamically translating
them into its internal VEX execution format. As a result,
Valgrind is able to perform fine-grained instrumentation at
the lowest levels of the machine’s architecture. Unlike similar
emulation systems such as QEMU, Valgrind is also able
to interpret higher-level debugging symbol information to
support various functionalities such as memory leak detection.
Cafegrind builds upon these intrinsic features to track the life-
cycle of data and provides additional insight into specific data
structures by performing automatic type inferencing.

B. The Life-cycle of Data

The life-cycle of data in a program is shown in Figure
[[l First, memory is allocated by using a function such as
malloc() or new and it is then initialized by a function such
as memset(), C++ constructor or memory pool constructor.
Once the base object is ready, its fields are populated with
information and the data structure is accessed and modified as
the program runs. Once the data structure is no longer needed,
it is freed and its memory returns to a pool for reallocation.
Throughout this process, memory locations can be overwritten
by modification, initialization and reallocation. However, the
process of relinquishing memory does not always clear the
latent contents of the data structure. In many cases, data is
only partially destroyed as reuse of a memory area does not
always completely overwrite old data. This partial destruction
process is one of the underlying principles behind volatile
memory forensic analysis and is useful in uncovering freed
data. Cafegrind uses empirical methods to track how much
data can be recovered from memory dumps that contain both
active and freed data.

C. Type Inferencing

Since C/C++ are not strongly typed languages, Cafegrind
must infer the type of allocated memory areas to build its ob-
ject map. To illustrate how this works, consider the following
code snippet:

[1] struct datastructure * mydata;
[2] mydata = (struct datastructure x)
malloc( sizeof( struct datastructure ) );

Deallocation

Allocation

Initialization

Access/

Modification Population

Fig. 1. The lifecycle of data



[3] mydata->fldl = 100;

In the above example, on line 1, the program -creates
a pointer to an object of type datastructure on the
stack. Line 2 calls malloc() to allocate memory for type
datastructure, but malloc() returns a memory area with
the type void* which is then cast back to the proper type.
Since this type casting is not present in the assembly code,
we have to rely on an alternate method to infer the type of
the memory allocation. The important assignment here is on
line 2. When Cafegrind observes that the malloc memory area
is assigned to a local stack variable, Cafegrind propagates the
type information from the stack variable to the memory area.
In assembly code, line 2 is implemented by using a store in-
struction where the target of the store is the address of the stack
variable mydata and the value written to it is the address
returned by malloc(). Cafegrind first checks if the type for the
target address is known and having determined that the type
is struct datastructure we can propagate the type to
the memory area described by the value in the instruction.
Cafegrind uses this incremental process to build and maintain
type information for dynamic memory allocations.

Advanced inferencing techniques
Complete type inferencing is a challenging task because of
the plethora of ways in which programs interact with loosely
typed data. We briefly discuss some strategies to achieve more
complete coverage. Some of these strategies are experimental
and we are working on evaluating the benefits of these
strategies.

First, precise member-level tracking is required for accu-
rately tracking the type of structures. In some cases, local stack
variables could point into nested objects within an existing al-
location or into a generic array and we keep track of the offsets
of constituent members to increase the accuracy. Secondly,
there could be instances where a heap allocation is directly
assigned to another heap allocation. For instance, if a structure
has a pointer to a buffer that is allocated on demand, the
memory area provided by malloc() may be directly assigned
to a pointer belonging to a dynamic allocation on the heap.
In this case, we use any existing inference we have about the
source of the assignment and propagate the appropriate type
to the destination.

Alternatively in C++, types can be inferred by monitor-
ing object constructors. When new is invoked, all construc-
tors in an object’s inheritance hierarchy are called starting
from the most generic to the most specific. For instance,
a square object may run its constructors in the following
order: shape—rectangle—square. In this case, the object type
inference would be made when the square constructor is called
with a pointer to a square implicitly passed with this argument.
Since C++ stores its constructors in a special ELF section
called .ctors, we can adequately identify which functions serve
as constructors for type inferencing. Another safety check is
to ensure that the name of the constructor is consistent with
the purported type of the object.

Finally, ambiguous types involving unions or generic arrays
cannot currently be resolved using our framework. To solve
this problem, we would need to develop a type agreement and
type history system. For instance, a generic array may initially
be recognized as a char* array at first, but then in a different
context, the type resolution system may identify that various
offsets in the array correspond to ethernet packets. The system
should recognize and promote subtypes as necessary in order
to maintain high fidelity type inferencing.

D. Methodology

In order to track the data life-cycle of a program and also
build an object map by performing type inferences, Cafegrind
instruments the following events while a program is running:

1) Memory allocation
2) Data structure read/write accesses
3) Memory deallocation

To support type inferencing, Cafegrind intercepts all mem-
ory allocation and deallocation requests. When an allocation
is made, Cafegrind tracks the memory object returned by
malloc() and the stack trace at the time of the allocation.
Recall that malloc() does not return typed objects; objects
are of the generic type void*. These allocations are stored in
the object map, which is implemented as an efficient ordered
set for fast lookup and retrieval. Cafegrind only discovers the
type of a memory object when the object is loaded into a
typed pointer object as described in Section [[IIZ=Cl This is
enabled by intercepting store instructions to memory locations
and Cafegrind can thus track the assembly level assignment
of a pointer to the memory object to a stack location. If
the pointer points to a tracked memory location, Cafegrind
performs a lookup on the debug information associated with
the executable to describe the type of the stack variable.
This process queries the debug information present in loaded
libraries and binaries in the DWARF3 [2] format and helps
identify the type of the stack object. Once the type of the
stack object has been identified, it is then propagated to the
dynamically allocated memory object and stored in the same
ordered set.

In addition to performing type inferencing, Cafegrind also
tracks accesses and modifications to the data structure. This
allows analysis of the access patterns to be associated with a
particular type. These accesses are tracked by instrumenting
all memory loads and stores. In the previous code snippet,
line 3 illustrates how Cafegrind tracks data accesses. When
a memory address is accessed, Cafegrind checks its internal
allocation database to see whether or not the access belongs
to a tracked allocation. If so, Cafegrind identifies which
allocation the access belongs to and resolves the member
being accessed. These accesses are tracked and aggregated
statistically to reveal how the underlying data types are being
used. Furthermore, we also track which function call led to
the data access and aggregate this information to find which
data types a particular function accesses. Cafegrind once again
uses efficient algorithms based on ordered sets to perform the
lookup and updates quickly.



Cafegrind also maintains a set for allocations that have been
freed by the application. This set is used to track when objects
are overwritten in memory and helps determine the time at
which data is destroyed. In addition to maintaining properties
of data structures, we also collect their binary contents. This is
useful for off-line analysis using utilities like strings and
the contents are clustered by their type in separate files to
enable easier processing.

By performing such monitoring, Cafegrind is able to better
understand how data is created, accessed and destroyed. This
can provide an empirical analysis on which data structures
could be found and for how long they are expected to persist.
For instance, a forensic analyst may find some interesting
information in an HTML cache object, but this type of object
may be transient and the data stored in it can change through-
out a browsing session as the user visits certain websites.
Cafegrind can provide an analysis of the longevity of such
data.

IV. EVALUATION
A. Experimental Setup

Our technique described in Section [T relies on explicitly
monitoring canonical variable accesses and assignments. Com-
mon compiler optimizations can store pointers in registers
instead of allocating space on the stack. This process can
affect Cafegrind’s type inferencing algorithm, thus Cafegrind
only works on binaries and shared libraries that are compiled
with debugging options enabled and optimization disabled.
From a forensic standpoint, an investigator is unlikely to
encounter a machine with such a configuration. However, the
purpose of this paper is to study the ideal behavior of data
structures and applying these alterations does not operationally
affect the behavior of the applications we study except for
imposing additional runtime overhead when the program is
being instrumented.

Our experiments were run on a single Intel Core i7 920
CPU running at 2.67 GHz with 6GB of RAM running Gentoo
Linux 1.12.14 on the 2.6.34-r12 kernel. All the applications
and libraries were compiled with debugging enabled and
optimization disabled. This configuration affords Cafegrind
visibility into the inner workings of system applications and
libraries. As a result, we can trace a complete execution chain
of all the subsystems such as the KDE desktop environment
if desired.

B. Basic Concepts

In this paper, we focus on web browsers because of their
increasing popularity and importance. We study Firefox and
Konqueror, two open source web browsers and measure the
effectiveness of “private browsing mode” against core dump
analysis. Further, we also look at which data structures could
potentially leak private information and also study the simi-
larities and differences between the two browsers.

For each object in an application, we track the following
attributes:

TABLE I

COVERAGE
Application Store Load Overall
Coverage  Coverage  Coverage
Firefox 70.48 % 88.11 % 83.51 %
KWrite 85.8 % 94.27 % 92.66 %
Links 99.09 % 99.99 % 99.6 %
Tor 85.95 % 96.43 % 95.02%

1) Type - The type of an object

2) Object Size - The size of an object

3) Age - The length of time an allocation lasts before it is
deallocated

4) FreedAge - The length of time a deallocated structure lasts
before it is clobbered by a subsequent allocation

5) Reads - Number of reads performed

6) Writes - Number of writes performed

7) Allocation Size - Size of the allocation including slack

Our evaluation methodology cross-analyzes these attributes
to find correlations which reveal patterns and relationships
in the way that these structures are allocated, accessed and
freed. We measured forensically interesting data structures in
several ways. First, we apply well-known string identification
algorithms to find ASCII strings in memory. This helps us
identify web pages and XML documents as well as HTTP
requests that are latent in memory. Secondly, we perform
outlier analysis [4] on the dataset to find objects that are large,
frequently accessed, or have great longevity. Outlier analysis
is useful to find data structures which have different properties
based on configuration changes. Cafegrind thus produces a list
of candidate types that the forensic analyst can inspect more
closely to find evidence of interest. In this paper, we have
taken the candidate list and applied our expertise to identify
and measure the characteristics of interesting types of forensic
evidence.

C. Coverage

The type inferencing coverage is measured by counting
the number of load/store operations on dynamically allocated
regions of memory for which Cafegrind has inferred the type.
In terms of type inferencing coverage, Cafegrind performs
remarkably well. As shown in Table [l we have seen upwards
of 90% type inferencing accuracy for several real world
applications. This behavior should be expected since the
type information comes from debug information ingrained
in the program itself. The coverage was also improved as
the system that was used for evaluation contained shared
libraries built with debug information. Additionally since we
tracked load/store instructions from the program and its linked
libraries, our type inferencing technique was able to get a clear
insight into the creation and usage of data types. However
we have not compared the accuracy of the inferred types
with the ground truth due to the complexity of obtaining the
ground truth for large applications and there are several factors
that can affect the performance of the type inferencing system:



1) Generic arrays of char* and similar types that are cast
into specific types before access.

2) Variable length structures where the last element is a
void* or char*.

3) Unions used in structures where the type is ambiguous.

4) Nested types with unions. Cafegrind currently doesn’t
handle nested type agreement.

5) The use of custom allocators which return void*. Cur-
rently, Cafegrind isn’t able to follow multiple levels of type
propagation.

Nonetheless, from experience and cross-validation we find
that Cafegrind performs very well in real-world scenarios. Cer-
tainly, there are cases where programs use certain practices that
may be challenging for type inferencing systems to handle. As
we have seen with Firefox there are large code-bases that use
pointer wrappers, templating and other constructs which can
obscure the true type of an object. This remains a challenge
for even the best type inferencing systems. In the absence of
compiler assistance, there are not many options to handle these
cases. For example, KOP [6] relies on additional compiler
information to extract the type assignments.

D. Applications

Firefox
Firefox is a popular web browser that supports private brows-
ing mode. When Firefox starts up, it allocates several singleton
UI and bookkeeping structures. As the user opens web pages,
Firefox creates a number of HTML parsers, XML parsers, Ul
widgets and graphical image renderers for PNG/JPG images
present on a webpage. The purpose of our study is to measure
how many of these elements are created when using the
private browsing mode and are latent in memory for an
extended period of time. This measurement provides a rough
measure on how much forensic evidence is available during
core dump analysis. We also identify which data structures
contain sensitive information .

Figure [2] shows a histogram of the distribution of object
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Fig. 2. Firefox: Object age histogram

ages. Many of the objects allocated by Firefox have a long
lifespan. This is likely to be the case because Firefox uses a
custom allocator and smart pointers.

Figure [3] shows how long freed objects last in memory be-
fore they are ultimately reallocated and clobbered. There seem
to be three distinct clusters representing long-term, medium-
term and short-term reallocations. This behavior is reflective
of how the memory allocator redistributes memory. Smaller
allocations are more frequent and therefore, the longevity of
their data is also shorter because these smaller memory pools
are heavily used. Larger allocations tend to be more rare and
thus latent data has a longer life expectancy in these pools.
However, if the system is running low in memory, larger pools
can be split and reallocated to service requests for smaller
allocations.

These results confirm our observations about how Doug
Lea’s malloc() allocator [I8]] is implemented in GLIBC
2.x. This allocator tends to have the following proper-
ties(documented in the source code): small allocations are
made from a pool of quickly recycled chunks, large allocations
(>= 512 bytes) are made in FIFO order and very large
allocations (>= 128 KB) are made using system memory
facilities. Much of the evidence we found was stored in large
ring buffers or cache structures which tend to be allocated
in larger pools and since larger allocations have a longer life
expectancy, we believe that volatile memory forensics can be
used to extract useful information from applications.

We perform a conjoint measurement of Firefox to better
characterize how private mode manages data structures. Since
private mode cannot be used in isolation, we run a series of
conjoint actions depicted in Figure 4] as an experiment meant
to isolate the effects of private mode.

Figure M describes the methodology we used during our
experiments. We denoted with ‘[F,W]’ the action of launching
Firefox in Normal Mode and visiting a known webpage. We
denoted with ‘[E,P,W]’ the action of launching Firefox in Nor-
mal mode, activating the Private mode option and then visiting
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the same webpage we visited in ‘[FEW]’. As part of another
task, denoted by ‘[EN,W]’, we proceeded to launch Firefox
in Normal Mode, opening a tab and then visiting our test
webpage. We also validated our experiments by doing three
more tests involving enabling the Private Mode in between
launching the Firefox program, opening a new tab and actually
visiting the webpage, but results from these experiments did
not have any significant differences from the ones presented in
the paper. Another task we included was launching Konqueror
and visiting the page we previously visited with Firefox. For
all our tasks we collected in the background all the information
using Cafegrind. Our results are shown in different sections
of Figure Al Figure Bh shows how Firefox in Normal mode
accesses various data structures and how Private Mode differs
by accessing different data structures. Figure Bb presents
the differences between accessing Firefox in Normal Mode
and Firefox New Tab. Initially we suspected that Firefox in
Private mode accessed unique types of data structures, but
when comparing Figure Bh against Figure Bb we noticed there
existed some overlap. Upon a deeper analysis we refined our
list of unique data structure types that Firefox in Private
Mode uses which we depict in Table Bd. By analyzing the
Firefox source code, we were able to verify that private mode
uses separate state storage objects for browser history and
DOM structures and this is reflected in the new instances of
storage and file streams accessed. Moreover, we noticed that
every private mode instance tab has a separate Javascript stack
context.

In Figure Bk, tables Bk and BF we present how Firefox
and Konqueror access different types of data structures. We
observed a significant overlap between the types of data
structure accessed by each of the program. We found that these
datastructures were from shared libraries such as fontconfig
and X11. We also noticed that there were some datastructures
which were only used in either Firefox or Konqueror. By
analyzing Cafegrind output we found these to be related to
the fact that they use different HTML rendering engines.

Actions:

F: Launch Firefox

K: Launch Konqueror

P: Launch Private Mode
N: Open new tab

W: Go to test site

| %= FPW] | L > B |

K,N,W

Fig. 4. Conjoint measurement of data structures

Furthermore, we ran Cafegrind on Firefox and determine
which data structures retain information from the private
browsing mode. We launched Firefox, entered private brows-
ing mode, visited a popular tech website and stopped private
browsing mode. At this point, we enabled the dumping of
accessed/freed memory structures with more than 40% ASCII
characters and proceeded to close Firefox. In searching these
dumps, we found a plethora of information left over from the
private browsing session, some of which is shown below.

Private Browsing: Residual Data in Firefox:

1) GStringr, gconvinfosteps, nsAttrValuemBits, nsCAu-
toString, nsSCOMPtrnsIContent, nsCOMPtrnsIURI, nsEntry-
header, pngstructdefjmpbuf - All contained the URL as well
as a variety of data from the visited website

2) Tokenz - Contained SQL statement intended to clean up
private browsing mode

3) nsXPTCVariant - Contained a large assortment of data,
ranging from PNG files to URLs to various private browsing
resources, such as cookies

4) JSHashEntrynext - Contains a variety of URLs, many
linked to javascript and XML files

5) ScopedXPCOMStartupmServiceManager - Cache con-
tains a variety of information, including URLs and SQL
statements

Outside of private browsing mode, we found the following
structures to be key to the operation of Firefox. The list
is extensive, so we present an abbreviated list of the most
important types here.

Interesting Structures Include:

1) GCGraphBuilder - Not surprisingly, the garbage collec-
tor’s data structure is the most frequently written object. It
has to track other objects for garbage collection and has a
long lifetime.

2) nsCOMPtr< nsICSSParser > - This is an instance of
a CSS parser. It has a huge number of writes. nsSCOMPtr is
a smart pointer that manages memory to prevent leaks and
has a long lifetime.

3) XML _ParserStruct - Parses XML structures and has a
relatively short lifetime.

E. Code Metrics

Cafegrind is over 2,100 lines of code and it builds upon
the Valgrind framework which has over 87,000 lines of code.
Adding tracing and instrumentation functionality in Cafegrind
is relatively straightforward by using standard Valgrind func-
tions.

F. Performance

We compared the performance of Cafegrind against the
performance of the Valgrind tool itself in Table [l Valgrind in
its purest form imposes a modest performance penalty because
it does binary translation and intercepts function calls. Lackey



Accesses: Firefox Private vs Firefox Normal

Accesses: Firefox Normal vs Firefox NewTab

1.E+10
’ 1.E+10
1.E+09 3
1E+08 1.E+09
: L 1.E+08 .
«» LE+07 - N X
& 1E+06 Firefox Private @ LEHO7 Firefox NewTab
a b o Fi 4 1E+06 .
Y 1E+05 Firefox Normal @  Firefox Normal
%] 8 1.E+05
: LE+04 < LE+04
1.E+03 ® 03
LE+02 LE+02
1.E+01 1.E+01
1.E+00 1.E+00
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
Data Structure IDs Data Structure IDs
(a) (b)
Accesses: Firefox Normal vs Konqueror Normal
1.E+10
1.E+09 $
’ *
w LE+07 struct nsCOMPtr<nslJSContextStackiterator> o 232603
g 1.E+06 struct nsCOMPtr<nsliFileInputStream> 126703 0
g 1.E+05 struct nsCOMPtr<nsiStorageStream> 31284 o
: 1E+04 struct nsRegion.mCurRect 2923 )
1.E+03 struct nsCOMPtr<nsiScriptError> 929 0
1.E+02 Konqueror Normal
LE+01 o Firefox Normal struct nsCOMPtr<nsIDOMNodelList> 234 0
E+
1.E+00 —
0 200 400 600 800 1000 1200 1400
Data Structure IDs Table: Data structures Accessed in Private Mode
(c) (d)
Data S pe efo onquero
*struct _FcStrSet.ref 565 565
*struct _FcCache.magic 983 983
*struct XIcDatabaseRec.category q 1505 1505 *struct QHash<int> These are QT libraries are used by
— = *struct QMap<Qstring> Kongqueror but not Firefox
*struct _DatabaseRec.category 1649 1649 struct nsAutoTArray<nsString> These are smart pointers used in
*struct XLCd.methods 2702 2702 &struct nsRefPtrHashtable<nsCStringHashKey> Firefox but not in Konqueror

*struct _FcCacheSkip.cache 184 198

Table: Data structures Used in Firefox and Konqueror

(e)

Table: Different datastructures used in Firefox and Konqueror

(f)

Fig. 5. Firefox and Konqueror analysis




TABLE I

PERFORMANCE
Application Time
Firefox native 6s
Firefox Cafegrind 3:30 m
Firefox Lackey 2:57 m
Firefox Memcheck 1:52 m

Konqueror 2s
Konqueror Lackey 3:12 m
Konqueror Cafegrind 3:26 m

[21] is an example tool in Valgrind which traces memory
accesses in addition to other instrumentation. When Lackey
is used, the performance quickly degrades as each instruction
is individually executed with memory tracing support enabled.
Since Cafegrind uses facilities that are similar to what Lackey
does, its performance is similar to that of Lackey. Further per-
formance profiling showed that the additional functionalities
of type inferencing and object tracking contribute around 29%
and 7% overhead respectively.

V. DISCUSSION

Volatile memory forensics is still a nascent field in many
ways. Current techniques developed to extract evidence of
interest often rely on expert knowledge or some intuition about
the structure of evidence. Current approaches have explored
extracting ASCII data and data of high entropy. We believe that
these approaches can be complemented by the use of statistical
data to further identify these structures. Cafegrind is a step in
this direction because it helps to assess the practicality of data
extraction and automatically identify target types.

In the long term, we believe that the collection of programs
that need to be considered in a forensic investigation can be
quite large and better systematic approaches to forensics are
necessary to address the natural diversity in software systems.
In the process of doing so, it is absolutely necessary to estab-
lish a ground truth as a baseline to measure evidence extraction
against. Since the majority of popular applications are written
in a loosely-typed language, it becomes necessary to adopt
type-inferencing and type-discovery methods to effectively
capture an accurate object map.

Another trend that affects analysis is the use of modular
components in software. For instance, many applications em-
bed web browsers, movie players and use common encryption
libraries. Learning to recognize forensic evidence in one
instance of a library is sufficient, because the same techniques
can be equivalently applied to all other similar instances.
However, this level of sharing illustrates how complicated the
software stack can be. In the course of our analysis, we found
that some applications such as web browsers use many shared
libraries and in some cases such as Konqueror, the original
application binary simply launches an instance of a shared
web rendering framework called WebKit.

Furthermore, since libraries have strict function export inter-
faces and well-defined data structures for interaction, crossing
library boundaries can reveal a wealth of forensic information.

This is not surprising because these interfaces have been
used as type-revealing operations in type-sink systems [19].
Likewise, the use of these libraries often requires data type
conversion between different kinds of data structures and this
results in duplication of data. This duplication happens at the
data structure level where the structures may be shadowed in
different libraries or in buffers where libraries pass information
to each other. For instance, a web browser might use libxml to
parse an XML file and then use libgt to display it. An XML
file parsed in this workflow would appear in the private data
of both libraries. Additionally, data can be buffered when it is
being compressed or encrypted. The original buffer contains
a copy of the data as well as the compression/encryption
library’s temporary buffer. As a result, there are many copies
of same data present in memory and our analysis is just the
first step in shedding some light on the associations between
these structures.

Attribution is another important issue in this discussion.
Some data structures found in web browsers may not have
been directly created as a direct consequence of user actions.
For instance, an advertisement served on a page may not
have been knowingly requested by the user and any forensic
analysis should take the source of such evidence into account.
This effect is especially evident with Tor where anonymized
network packets may be routed through client nodes. Any
forensic evidence collected from Tor should take into account
the source of the data with proper attribution. Further work
needs to be done on this attribution process.

VI. CONCLUSION

Forensic analysis of evidence gathered from volatile mem-
ory is a nascent but important field. Advances in algorithms
and methodologies supporting this extraction process seem to
be headed toward a better understanding of the semantics and
contents of this information. To help assess the practicality
of extracting evidence from these memory dumps, we attempt
to establish a baseline for the object map by using the algo-
rithms described in this paper. Although the initial results are
encouraging, much work still remains to make full evidence
extraction from volatile memory dumps a reality.

Several important challenges remain to be solved. First is
the problem of type classification given the binary contents
of an object. Cozzie was a good step, but we found
that this problem is perhaps more challenging than it initially
appears. For instance, even though we are monitoring seven
attributes, unique identification of a type requires additional
information. On the flip side, these attributes may be able to
help guide a forensic analyst toward interesting evidence by
virtue of identifying the characteristics of relevant data.

Looking forward, we expect that advances in leveraging
peripheral information from compilers and debugging infor-
mation will help in the identification process. Our work is
just one step to drive this process forward by identifying and
characterizing such data.
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