
Shivaram Venkataraman Research Statement

Research Statement
Shivaram Venkataraman

Machine learning methods power the modern world, from recommending new products to detecting supernovae in
astrophysics. The ubiquity of massive data has made these algorithmic methods viable and accurate across a variety
of domains. However the end of Moore’s law and the shift towards distributed computing architectures presents a
challenge to this trend. To meet the scale and performance requirements of the future, we need to develop efficient
systems and scalable algorithms. My research focuses on designing machine learning frameworks that explicitly take
into account these scale, algorithmic, and hardware challenges at the same time – jointly designing end-to-end systems
for efficiency and performance.

In my dissertation research I address the challenges in large scale machine learning through three lenses. First,
how can we build systems that exploit the parallelism and elasticity present in modern datacenters while providing
resiliency? Second, given system constraints what new algorithms can better tackle large scale learning problems?
And finally, what abstractions most efficiently let us express user intent, while providing the right primitives for
optimized execution?

Systems: A number of large scale machine learning applications are deployed on shared cloud computing infras-
tructure. In order to appropriately provision such clusters, I developed a performance prediction framework [13]
that can cheaply suggest the optimal configuration to use. Further to enable low latency execution, my work pro-
posed scheduling techniques to reduce time spent in data access (KMN [11]) and coordination (Drizzle [12]).
Specifically in Drizzle, we show how benefits from batch processing and streaming systems can be combined to
achieve low latency during normal execution and fault recovery .

Algorithms: Based on constraints and trade-offs present in distributed systems, I have also contributed to the
development of algorithms for large scale numerical optimization. These include algorithms that can handle large
kernel learning problems that don’t fit in cluster memory [6] and algorithms for linear systems that can converge
faster [7] than existing methods.

Abstractions: Finally, with the adoption of distributed computing environments, it is important to have abstractions
that make it easier to express new algorithms. My work on Presto [10] was the first distributed framework for the
R language that enabled large scale learning with a easy to use, high-level API. I also helped create large scale
machine learning libraries [3, 5, 16] that enable users to easily compose a number of ML operations.

Impact: My academic research has been productized by industry, incorporated into popular open-source projects, and
is used in supercomputing centers for scientific applications. My work on Presto was commercialized by HP as a part
of Vertica and SparkR is a widely used open source package. Similarly my work on machine learning libraries and
the concept of machine learning pipelines is a part MLlib [3], the machine learning library in Spark. Finally, my work
on low latency scheduling is being deployed on supercomputers at the Lawrence Berkeley National Lab (NERSC) to
accelerate matrix factorization algorithms for mass spectrometry imaging and neutrino detection.

Future research at the intersection of computing systems and algorithms for machine learning is vital to translate the
promise of big data into reality. With the evolution of datacenters to include new hardware devices like accelerators
and the adoption of machine learning in feedback-driven workloads like robotics, there is a greater need for devel-
oping systems that can adapt to changes. Thus, I would like to study how we can design adaptable systems that can
automatically choose algorithms, data layouts and hardware configurations based on the latency and statistical er-
ror requirements. Further, collaborations across areas is necessary to develop such end-to-end systems. My research
in graduate school has been greatly enriched by collaborations with machine learning researchers at UC Berkeley,
domain scientists at NERSC and industrial developers at a number of organizations like HP Labs and Intel. These col-
laborations helped me better understand problems in large scale data analysis and have also prepared me to collaborate
effectively across disciplines in academia and with industrial organizations.

Page 1 of 4



Shivaram Venkataraman Research Statement

Systems for Efficient Execution
Along with the trend of large scale machine learning, the past few years have also seen applications switch to using
cloud computing infrastructure. Using shared, elastic infrastructure brings about new challenges in executing applica-
tions efficiently and my work proposes system designs to address them.

Performance Modeling: Configuring and deploying applications in the cloud is one of the major challenges faced
by users. This is because choosing the right hardware configuration can significantly improve performance and lower
cost, but it is often unclear what the appropriate configuration is for a given workload. Thus there is a need for tools that
can predict performance under various resource configurations and then choose the best among them. To address this,
we developed Ernest [13], a performance prediction framework that requires very little training data. The key insight
in Ernest is that a number of machine learning applications have predictable structure in terms of computation and
communication. Thus we build performance models on small samples of data and then predict performance on larger
datasets and cluster sizes. To minimize the time and resources spent in building a model, we use optimal experiment
design, a statistical technique that allows us to collect as few training points as required.

Low-Latency Scheduling: Schedulers used in data processing frameworks are responsible for controlling what com-
putation is executed where. The key goal for schedulers is to minimize the amount of time spent in accessing data; i.e.
provide data locality while ensuring coordination overheads are not high.

To improve data locality, we studied data access properties of machine learning algorithms and found that most
algorithms operate on a sample of the input data. Due to the use of sampling, there exists a large number of subsets of
data that are all valid inputs to the job. Based on this observation, we developed KMN [11], a system that leverages
these choices to perform data-aware scheduling. KMN not only uses choices to co-locate tasks with their input data but
also percolates such combinatorial choices by launching a few additional tasks at every stage. This approach is helpful
for minimizing the effect of stragglers in statistical applications and has been adopted by other machine learning
systems like Tensorflow.

While centralized scheduling, used in batch processing systems like Spark, enables better task placement and fault
tolerance, it can impose a high overhead for low latency applications. On the other hand streaming systems, such
as Naiad or Flink, provide lower latency during normal execution but typically incur high latency while adapting to
changes (e.g., fault recovery). We built Drizzle [12], a framework that combines the benefits of batch processing and
streaming systems. Drizzle exploits the iterative properties of machine learning algorithms to achieve low latency,
while retaining the fault tolerance properties of Spark. Our key insight in Drizzle is that we can decouple fine-grained
execution from coarse-grained scheduling decisions. Based on this insight, we amortize scheduling overheads by
grouping many iterations at once.

Scalable Algorithms
Existing machine learning algorithms often cannot scale to handle very large problems as they are unaware of systems
constraints. By accounting for the execution environment we can develop more scalable algorithms. For example,
while developing systems for machine learning we found that for very large problems like kernel SVMs existing
iterative distributed optimization methods were insufficient as the input was too large to fit in cluster-wide memory. We
developed algorithms [6] that only required a part of the input to reside in memory and thus can scale to kernel matrices
up to 40TB in size. We also showed how kernel approximations like the Nystrom method can be efficiently executed
in a distributed environment. For all the algorithms we also accounted for how the computation and communication
costs change as the cluster size grows. We found that by studying the theoretical convergence rates and systems costs
together, we could develop algorithms that made the most progress while making best use of the resources.

Recently we extended this work to devise accelerated algorithms [7] that have better convergence properties com-
pared to classical algorithms like the Conjugate Gradient method. This work also explores the importance of sampling
distributions in machine learning algorithms and shows how uniform random sampling can be much better than a
fixed partitioning scheme. However implementing uniform random sampling is expensive in parallel settings and in
the future I plan to study sampling schemes that are efficient to implement and have provably good convergence rates.

Page 2 of 4



Shivaram Venkataraman Research Statement

Abstractions for Machine Learning
Based on my experience in building systems and developing high performance algorithms, I learned that using an
appropriate programming model was crucial for both improving usability and for achieving high performance. Early
efforts in implementing large scale machine learning algorithms were based on the data parallel model provided by
systems like MapReduce. However it is often cumbersome to write complex machine learning algorithms in data-
parallel models. Many of these algorithms are best formulated as linear algebra operations on arrays. In Presto [10]
we developed a distributed array-based abstraction which allows algorithm designers fine-grained control over com-
putation and communication. We extended this work to build distributed data frames in SparkR [14]. Distributed data
frames further allows users to do structured data processing and encode partition-aggregate workflows.

While distributed data structures are useful for expressing a single machine learning algorithm, a number of real-
world applications are more complex and require the combination of multiple algorithms. For example a text classi-
fication program might featurize data using TF-IDF scores, then perform dimension reduction using PCA and finally
learn a model using logistic regression. To address this, we developed the idea of machine learning pipelines [5] which
allow users to compose simple operators. Along with this we also created a library of algorithms [3] and linear algebra
operators [16] that are now a part of Apache Spark.

Beyond Analytics
While my dissertation is primarily focused on analytics applications, I am broadly interested in data processing systems
and have also worked on systems for transaction processing (or OLTP) workloads.

Replication of data in distributed data stores presents a fundamental trade-off between latency and consistency. In
Probabilistically Bounded Staleness [2] (PBS), we introduced a consistency model which provides expected bounds
on data staleness with respect to wall clock time. Using PBS, we were able to measure the latency consistency trade-off
for quorum-based systems like Cassandra [1]. Sharing distributed storage systems is also challenging while ensuring
that service-level objectives (SLO) are met for throughput and latency-sensitive applications. In our work on Cake [15],
we developed a coordinated, multi-resource scheduler that enforces SLOs in shared distributed storage systems.

Prior to my research at Berkeley, I studied the design of storage systems for non-volatile byte-addressable memory
as a part of my masters thesis [8] at UIUC. My work proposed Consistent and Durable Data Structures (CDDSs) [9],
a single-level data storage design that allows programmers to safely exploit the low-latency and non-volatile aspects
of new memory technologies.

Future Research
Future research at the intersection of computing systems and machine learning algorithms is necessary to handle
changes in hardware and evolution of workloads. Some of the research problems I plan to tackle include:

Declarative Abstractions for Machine Learning: Designing large scale machine learning applications is challeng-
ing and requires intricate knowledge of the domain, statistics and systems characteristics. Further, implementations of
machine learning applications are at a low-level and describe how they should be executed rather than what should
be executed. The main reason for this is that the appropriate machine learning algorithm to use often changes based
on the data and hardware being used. The adoption of heterogeneous hardware like accelerators and asynchronous
algorithms (e.g., HOGWILD!) further exacerbates this problem. My goal is to develop declarative machine learning
abstractions that can capture the intent of a wide variety of applications and correspondingly build systems to auto-
matically optimize execution for various hardware targets. Our work in developing the KeystoneML optimizer [5] is
an initial step towards this goal. I also plan to investigate new adaptable algorithms that can tune their execution based
on cost and latency requirements. In my recent work on Hemingway [4], we proposed techniques to model the conver-
gence rates of machine learning algorithms and this approach can be used to develop adaptable algorithms in the future.

Systems for Heterogeneous Hardware: The evolution of datacenter hardware is leading to the adoption of technolo-
gies like GPUs, non-volatile memory (NVM), battery-backed DRAM and disaggregated 100Gbps networks. These

Page 3 of 4



Shivaram Venkataraman Research Statement

changes are poised to herald a new rack-scale computing era. While my earlier work [9] looked at how OLTP sys-
tems could capitalize on non-volatile memory, it is unclear how analytics frameworks will adapt to these changes.
Specifically existing large scale data processing frameworks are often optimized for the shared-nothing architecture
and assume that network access is always expensive. I plan to develop new system designs that can effectively utilize
the performance improvements promised by next generation hardware while ensuring that the resilience and resource
sharing provided by existing frameworks is maintained.

References
[1] P. Bailis, S. Venkataraman, M. J. Franklin, J. M. Hellerstein, and I. Stoica. PBS at Work: Advancing Data

Management with Consistency Metrics. In SIGMOD, 2013. Demo.

[2] P. Bailis, S. Venkataraman, M. J. Franklin, J. M. Hellerstein, and I. Stoica. Quantifying Eventual Consistency
with PBS. VLDB Journal, 2014.

[3] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D. Tsai, M. Amde, S. Owen,
D. Xin, R. Xin, M. J. Franklin, R. Zadeh, M. Zaharia, and A. Talwalkar. MLlib: Machine Learning in Apache
Spark. Journal of Machine Learning Research, 17(34):1–7, 2016.

[4] X. Pan, S. Venkataraman, Z. Tai, and J. Gonzalez. Hemingway: Modeling Distributed Optimization Algorithms.
In Machine Learning Systems Workshop (Co-located with NIPS), 2016.

[5] E. Sparks, S. Venkataraman, T. Kaftan, M. J. Franklin, and B. Recht. KeystoneML: Optimizing Pipelines for
Large-Scale Advanced Analytics. CoRR, abs/1610.09451, 2016.

[6] S. Tu, R. Roelofs, S. Venkataraman, and B. Recht. Large Scale Kernel Learning using Block Coordinate Descent.
arXiv, 1602.05310, 2016.

[7] S. Tu, S. Venkataraman, A. Wilson, A. Gittens, M. Jordan, and B. Recht. Accelerating block Gauss-Seidel with
random coordinate selection. http://shivaram.org/drafts/acc-gs.pdf, 2016. Under review.

[8] S. Venkataraman. Storage system design for non-volatile byte-addressable memory using consistent and durable
data structures. Master’s thesis, University of Illinois, Urbana-Champaign, May 2011.

[9] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H. Campbell. Consistent and Durable Data Structures for
Non-Volatile Byte-Addressable Memory. In FAST, San Jose, CA, Feb. 2011.

[10] S. Venkataraman, E. Bodzsar, I. Roy, A. AuYoung, and R. S. Schreiber. Presto: Distributed Machine Learning
and Graph Processing with Sparse Matrices. In Eurosys, 2013.

[11] S. Venkataraman, A. Panda, G. Ananthanarayanan, M. J. Franklin, and I. Stoica. The Power of Choice in Data-
Aware Cluster Scheduling. In OSDI, 2014.

[12] S. Venkataraman, A. Panda, K. Ousterhout, A. Ghodsi, M. J. Franklin, B. Recht, and I. Stoica. Drizzle: Fast and
Adaptable Stream Processing at Scale. http://shivaram.org/drafts/drizzle.pdf, 2016. Under review.

[13] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Stoica. Ernest: Efficient Performance Prediction for
Large-Scale Advanced Analytics. In NSDI, 2016.

[14] S. Venkataraman, Z. Yang, D. Liu, E. Liang, H. Falaki, X. Meng, R. Xin, A. Ghodsi, M. Franklin, I. Stoica, and
M. Zaharia. SparkR: Scaling R Programs with Spark. In SIGMOD, 2016.

[15] A. Wang, S. Venkataraman, S. Alspaugh, R. Katz, and I. Stoica. Cake: Enabling high-level SLOs on Shared
Storage Systems. In SoCC, 2012.

[16] R. Zadeh, X. Meng, A. Ulanov, B. Yavuz, L. Pu, S. Venkataraman, E. Sparks, A. Staple, and M. Zaharia. Matrix
Computations and Optimization in Apache Spark. In KDD, 2016.

Page 4 of 4

http://shivaram.org/drafts/drizzle.pdf
http://shivaram.org/drafts/drizzle.pdf

